These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

115 related articles for article (PubMed ID: 38960407)

  • 1. AttABseq: an attention-based deep learning prediction method for antigen-antibody binding affinity changes based on protein sequences.
    Jin R; Ye Q; Wang J; Cao Z; Jiang D; Wang T; Kang Y; Xu W; Hsieh CY; Hou T
    Brief Bioinform; 2024 May; 25(4):. PubMed ID: 38960407
    [TBL] [Abstract][Full Text] [Related]  

  • 2. mCSM-AB: a web server for predicting antibody-antigen affinity changes upon mutation with graph-based signatures.
    Pires DE; Ascher DB
    Nucleic Acids Res; 2016 Jul; 44(W1):W469-73. PubMed ID: 27216816
    [TBL] [Abstract][Full Text] [Related]  

  • 3. An expanded benchmark for antibody-antigen docking and affinity prediction reveals insights into antibody recognition determinants.
    Guest JD; Vreven T; Zhou J; Moal I; Jeliazkov JR; Gray JJ; Weng Z; Pierce BG
    Structure; 2021 Jun; 29(6):606-621.e5. PubMed ID: 33539768
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Assessment of Solvated Interaction Energy Function for Ranking Antibody-Antigen Binding Affinities.
    Sulea T; Vivcharuk V; Corbeil CR; Deprez C; Purisima EO
    J Chem Inf Model; 2016 Jul; 56(7):1292-303. PubMed ID: 27367467
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Optimization of therapeutic antibodies by predicting antigen specificity from antibody sequence via deep learning.
    Mason DM; Friedensohn S; Weber CR; Jordi C; Wagner B; Meng SM; Ehling RA; Bonati L; Dahinden J; Gainza P; Correia BE; Reddy ST
    Nat Biomed Eng; 2021 Jun; 5(6):600-612. PubMed ID: 33859386
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Assessment of software methods for estimating protein-protein relative binding affinities.
    Gonzalez TR; Martin KP; Barnes JE; Patel JS; Ytreberg FM
    PLoS One; 2020; 15(12):e0240573. PubMed ID: 33347442
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Affinity improvement of a therapeutic antibody by structure-based computational design: generation of electrostatic interactions in the transition state stabilizes the antibody-antigen complex.
    Kiyoshi M; Caaveiro JM; Miura E; Nagatoishi S; Nakakido M; Soga S; Shirai H; Kawabata S; Tsumoto K
    PLoS One; 2014; 9(1):e87099. PubMed ID: 24475232
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Antibody design using deep learning: from sequence and structure design to affinity maturation.
    Joubbi S; Micheli A; Milazzo P; Maccari G; Ciano G; Cardamone D; Medini D
    Brief Bioinform; 2024 May; 25(4):. PubMed ID: 38960409
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Human germline antibody gene segments encode polyspecific antibodies.
    Willis JR; Briney BS; DeLuca SL; Crowe JE; Meiler J
    PLoS Comput Biol; 2013 Apr; 9(4):e1003045. PubMed ID: 23637590
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Trends in therapeutic antibody affinity maturation: From in-vitro towards next-generation sequencing approaches.
    Tabasinezhad M; Talebkhan Y; Wenzel W; Rahimi H; Omidinia E; Mahboudi F
    Immunol Lett; 2019 Aug; 212():106-113. PubMed ID: 31247224
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Ab-Ligity: identifying sequence-dissimilar antibodies that bind to the same epitope.
    Wong WK; Robinson SA; Bujotzek A; Georges G; Lewis AP; Shi J; Snowden J; Taddese B; Deane CM
    MAbs; 2021; 13(1):1873478. PubMed ID: 33448242
    [TBL] [Abstract][Full Text] [Related]  

  • 12. RosettaAntibodyDesign (RAbD): A general framework for computational antibody design.
    Adolf-Bryfogle J; Kalyuzhniy O; Kubitz M; Weitzner BD; Hu X; Adachi Y; Schief WR; Dunbrack RL
    PLoS Comput Biol; 2018 Apr; 14(4):e1006112. PubMed ID: 29702641
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Structural basis of antibody-antigen interactions.
    Sundberg EJ
    Methods Mol Biol; 2009; 524():23-36. PubMed ID: 19377934
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Antibody-protein interactions: benchmark datasets and prediction tools evaluation.
    Ponomarenko JV; Bourne PE
    BMC Struct Biol; 2007 Oct; 7():64. PubMed ID: 17910770
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Restricted diversity of antigen binding residues of antibodies revealed by computational alanine scanning of 227 antibody-antigen complexes.
    Robin G; Sato Y; Desplancq D; Rochel N; Weiss E; Martineau P
    J Mol Biol; 2014 Nov; 426(22):3729-3743. PubMed ID: 25174334
    [TBL] [Abstract][Full Text] [Related]  

  • 16. AB-Bind: Antibody binding mutational database for computational affinity predictions.
    Sirin S; Apgar JR; Bennett EM; Keating AE
    Protein Sci; 2016 Feb; 25(2):393-409. PubMed ID: 26473627
    [TBL] [Abstract][Full Text] [Related]  

  • 17. SnugDock: paratope structural optimization during antibody-antigen docking compensates for errors in antibody homology models.
    Sircar A; Gray JJ
    PLoS Comput Biol; 2010 Jan; 6(1):e1000644. PubMed ID: 20098500
    [TBL] [Abstract][Full Text] [Related]  

  • 18. mmCSM-AB: guiding rational antibody engineering through multiple point mutations.
    Myung Y; Pires DEV; Ascher DB
    Nucleic Acids Res; 2020 Jul; 48(W1):W125-W131. PubMed ID: 32432715
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A novel Arg H52/Tyr H33 conservative motif in antibodies: A correlation between sequence of antibodies and antigen binding.
    Petrov A; Arzhanik V; Makarov G; Koliasnikov O
    J Bioinform Comput Biol; 2016 Aug; 14(4):1650019. PubMed ID: 27452033
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Binding affinity prediction for antibody-protein antigen complexes: A machine learning analysis based on interface and surface areas.
    Yang YX; Wang P; Zhu BT
    J Mol Graph Model; 2023 Jan; 118():108364. PubMed ID: 36356467
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.