These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
105 related articles for article (PubMed ID: 3896058)
1. Ischemic brain injury and cell calcium: morphologic and therapeutic aspects. Van Reempts J; Borgers M Ann Emerg Med; 1985 Aug; 14(8):736-42. PubMed ID: 3896058 [TBL] [Abstract][Full Text] [Related]
2. The role of early Ca2+ influx in the pathogenesis of delayed neuronal death after brief forebrain ischemia in gerbils. Nakamura K; Hatakeyama T; Furuta S; Sakaki S Brain Res; 1993 Jun; 613(2):181-92. PubMed ID: 8186966 [TBL] [Abstract][Full Text] [Related]
3. Possible role of calcium entry blockers in brain protection. Baethmann A; Jansen M Eur Neurol; 1986; 25 Suppl 1():102-14. PubMed ID: 3758107 [TBL] [Abstract][Full Text] [Related]
4. Histologic changes in the hypoxic brain. Van Reempts J; Borgers M Acta Anaesthesiol Belg; 1984; 35 Suppl():209-18. PubMed ID: 6516732 [TBL] [Abstract][Full Text] [Related]
5. Calcium and hypoxic/ischemic brain damage--some critical and conceptual remarks. Kluge H Exp Pathol; 1991; 42(4):239-44. PubMed ID: 1959585 [TBL] [Abstract][Full Text] [Related]
6. Effects of ion channel blockade on the distribution of Na, K, Ca and other elements in oxygen-glucose deprived CA1 hippocampal neurons. LoPachin RM; Gaughan CL; Lehning EJ; Weber ML; Taylor CP Neuroscience; 2001; 103(4):971-83. PubMed ID: 11301205 [TBL] [Abstract][Full Text] [Related]
7. Neuroprotective effect of the peptides ADNF-9 and NAP on hypoxic-ischemic brain injury in neonatal rats. Kumral A; Yesilirmak DC; Sonmez U; Baskin H; Tugyan K; Yilmaz O; Genc S; Gokmen N; Genc K; Duman N; Ozkan H Brain Res; 2006 Oct; 1115(1):169-78. PubMed ID: 16938277 [TBL] [Abstract][Full Text] [Related]
8. Causes of calcium accumulation in rat cortical brain slices during hypoxia and ischemia: role of ion channels and membrane damage. Bickler PE; Hansen BM Brain Res; 1994 Dec; 665(2):269-76. PubMed ID: 7534604 [TBL] [Abstract][Full Text] [Related]
9. Dexamethasone aggravates ischemia-induced neuronal damage by facilitating the onset of anoxic depolarization and the increase in the intracellular Ca2+ concentration in gerbil hippocampus. Adachi N; Chen J; Liu K; Tsubota S; Arai T J Cereb Blood Flow Metab; 1998 Mar; 18(3):274-80. PubMed ID: 9498843 [TBL] [Abstract][Full Text] [Related]
10. The role of calcium in cellular dysfunction. Borgers M; Thoné F; Van Reempts J; Verheyen F Am J Emerg Med; 1983 Sep; 1(2):154-61. PubMed ID: 6680615 [TBL] [Abstract][Full Text] [Related]
11. [A pathological survey of the therapeutic effect on experimental hypoxic-ischemic encephalopathy]. Zhang L; Cai L; Zhang W Zhonghua Bing Li Xue Za Zhi; 1996 Apr; 25(2):102-4. PubMed ID: 9206216 [TBL] [Abstract][Full Text] [Related]
12. The effects of dantrolene on hypoxic-ischemic injury in the neonatal rat brain. Gwak M; Park P; Kim K; Lim K; Jeong S; Baek C; Lee J Anesth Analg; 2008 Jan; 106(1):227-33, table of contents. PubMed ID: 18165582 [TBL] [Abstract][Full Text] [Related]
13. Calcium handling by renal tubules during oxygen deprivation injury to the kidney prior to reoxygenation. Burke TJ; Singh H; Schrier RW Cardiovasc Drugs Ther; 1990 Oct; 4(5):1319-24. PubMed ID: 2278866 [TBL] [Abstract][Full Text] [Related]
15. Prior mechanical injury inhibits rise in intracellular Ca2+ concentration by oxygen-glucose deprivation in mouse hippocampal slices. Honda T; Fujiwara N; Abe T; Kumanishi T; Yoshimura M; Shimoji K Brain Res; 1994 Dec; 666(2):263-9. PubMed ID: 7882037 [TBL] [Abstract][Full Text] [Related]
16. Neuroprotection in ischemia: blocking calcium-permeable acid-sensing ion channels. Xiong ZG; Zhu XM; Chu XP; Minami M; Hey J; Wei WL; MacDonald JF; Wemmie JA; Price MP; Welsh MJ; Simon RP Cell; 2004 Sep; 118(6):687-98. PubMed ID: 15369669 [TBL] [Abstract][Full Text] [Related]
17. Intracellular and extracellular changes of [Ca2+] in hypoxia and ischemia in rat brain in vivo. Silver IA; Erecińska M J Gen Physiol; 1990 May; 95(5):837-66. PubMed ID: 2163431 [TBL] [Abstract][Full Text] [Related]
18. Enhanced calcium uptake by CA1 pyramidal cell dendrites in the postischemic phase despite subnormal evoked field potentials: excitatory amino acid receptor dependency and relationship to neuronal damage. Andiné P; Jacobson I; Hagberg H J Cereb Blood Flow Metab; 1992 Sep; 12(5):773-83. PubMed ID: 1324252 [TBL] [Abstract][Full Text] [Related]
19. Suppression of STIM1 in the early stage after global ischemia attenuates the injury of delayed neuronal death by inhibiting store-operated calcium entry-induced apoptosis in rats. Zhang M; Song JN; Wu Y; Zhao YL; Pang HG; Fu ZF; Zhang BF; Ma XD Neuroreport; 2014 May; 25(7):507-13. PubMed ID: 24509424 [TBL] [Abstract][Full Text] [Related]
20. Inhibition of T-type calcium channels protects neurons from delayed ischemia-induced damage. Nikonenko I; Bancila M; Bloc A; Muller D; Bijlenga P Mol Pharmacol; 2005 Jul; 68(1):84-9. PubMed ID: 15851654 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]