These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

110 related articles for article (PubMed ID: 38961183)

  • 1. Data-driven prediction on critical mechanical properties of engineered cementitious composites based on machine learning.
    Qing S; Li C
    Sci Rep; 2024 Jul; 14(1):15322. PubMed ID: 38961183
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effect of Cementitious Capillary Crystalline Waterproofing Materials on the Mechanical and Impermeability Properties of Engineered Cementitious Composites with Microscopic Analysis.
    Tan Y; Zhao B; Yu J; Xiao H; Long X; Meng J
    Polymers (Basel); 2023 Feb; 15(4):. PubMed ID: 36850296
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Review of Cementitious Composites Containing Polyethylene Fibers as Repairing Materials.
    Zhou S; Xie L; Jia Y; Wang C
    Polymers (Basel); 2020 Nov; 12(11):. PubMed ID: 33171827
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Ensemble Machine-Learning-Based Prediction Models for the Compressive Strength of Recycled Powder Mortar.
    Fei Z; Liang S; Cai Y; Shen Y
    Materials (Basel); 2023 Jan; 16(2):. PubMed ID: 36676320
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Study of flexural strength of concrete containing mineral admixtures based on machine learning.
    Li Y; Liu Y; Lin H; Jin C
    Sci Rep; 2023 Oct; 13(1):18061. PubMed ID: 37872290
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Optimisation of the Mechanical Properties and Mix Proportion of Multiscale-Fibre-Reinforced Engineered Cementitious Composites.
    Yang B; Wang C; Chen S; Qiu K; Jiang J
    Polymers (Basel); 2023 Aug; 15(17):. PubMed ID: 37688157
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Bio-inspired based meta-heuristic approach for predicting the strength of fiber-reinforced based strain hardening cementitious composites.
    Khan Y; Zafar A; Rehman MF; Javed MF; Iftikhar B; Gamil Y
    Heliyon; 2023 Nov; 9(11):e21601. PubMed ID: 38027981
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Relationship between Fractal Dimension and Properties of Engineered Cementitious Composites with Different Aggregates.
    Xia D; Chen R; Zhang D; Cheng J
    Materials (Basel); 2022 Oct; 15(21):. PubMed ID: 36363257
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effect of EVA Polymer and PVA Fiber on the Mechanical Properties of Ultra-High Performance Engineered Cementitious Composites.
    Yan F; Zhang P; Xu F; Tan W
    Materials (Basel); 2023 Mar; 16(6):. PubMed ID: 36984298
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Eco-Friendly, High-Ductility Slag/Fly-Ash-Based Engineered Cementitious Composite (ECC) Reinforced with PE Fibers.
    Shumuye ED; Liu J; Li W; Wang Z
    Polymers (Basel); 2022 Apr; 14(9):. PubMed ID: 35566929
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mechanical Properties of Hybrid Ultra-High Performance Engineered Cementitous Composites Incorporating Steel and Polyethylene Fibers.
    Zhou Y; Xi B; Yu K; Sui L; Xing F
    Materials (Basel); 2018 Aug; 11(8):. PubMed ID: 30115842
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Experimental Investigation on the Quasi-Static Tensile Capacity of Engineered Cementitious Composites Reinforced with Steel Grid and Fibers.
    Li L; Liu W; Wu J; Wu W; Wu M
    Materials (Basel); 2019 Aug; 12(17):. PubMed ID: 31438637
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Indirect prediction of graphene nanoplatelets-reinforced cementitious composites compressive strength by using machine learning approaches.
    Fawad M; Alabduljabbar H; Farooq F; Najeh T; Gamil Y; Ahmed B
    Sci Rep; 2024 Jun; 14(1):14252. PubMed ID: 38902314
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Machine learning models to predict the relationship between printing parameters and tensile strength of 3D Poly (lactic acid) scaffolds for tissue engineering applications.
    Ege D; Sertturk S; Acarkan B; Ademoglu A
    Biomed Phys Eng Express; 2023 Oct; 9(6):. PubMed ID: 37651988
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Hybrid BO-XGBoost and BO-RF Models for the Strength Prediction of Self-Compacting Mortars with Parametric Analysis.
    Ahmed A; Song W; Zhang Y; Haque MA; Liu X
    Materials (Basel); 2023 Jun; 16(12):. PubMed ID: 37374550
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Development of Sustainable Engineered Cementitious Composites by Incorporating Local Recycled Fine Aggregate.
    Zhou Y; Guo W; Zheng S; Xing F; Guo M; Zhu Z
    Polymers (Basel); 2023 Jun; 15(12):. PubMed ID: 37376347
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Influence of rice husk ash on the mechanical properties of ultra-high strength engineered cementitious composites (UHS-ECC).
    Liu F; Jin B; He Q; Zhou Y
    PLoS One; 2024; 19(4):e0301927. PubMed ID: 38635748
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Flexural Strength Prediction of Steel Fiber-Reinforced Concrete Using Artificial Intelligence.
    Zheng D; Wu R; Sufian M; Kahla NB; Atig M; Deifalla AF; Accouche O; Azab M
    Materials (Basel); 2022 Jul; 15(15):. PubMed ID: 35897626
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Experimental Investigation on the Mechanical Properties and Microstructure of Basalt Fiber Reinforced Engineered Cementitious Composite.
    Du Q; Cai C; Lv J; Wu J; Pan T; Zhou J
    Materials (Basel); 2020 Aug; 13(17):. PubMed ID: 32872088
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Interpretable Predictive Modelling of Basalt Fiber Reinforced Concrete Splitting Tensile Strength Using Ensemble Machine Learning Methods and SHAP Approach.
    Cakiroglu C; Aydın Y; Bekdaş G; Geem ZW
    Materials (Basel); 2023 Jun; 16(13):. PubMed ID: 37444890
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.