These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

83 related articles for article (PubMed ID: 3896127)

  • 1. Effects of site-specific amino acid modification on protein interactions and biological function.
    Ackers GK; Smith FR
    Annu Rev Biochem; 1985; 54():597-629. PubMed ID: 3896127
    [No Abstract]   [Full Text] [Related]  

  • 2. Need a catalyst? Design an enzyme.
    Maugh TH
    Science; 1984 Jan; 223(4633):269-71. PubMed ID: 6608147
    [No Abstract]   [Full Text] [Related]  

  • 3. Structure of a mutant of tyrosyl-tRNA synthetase with enhanced catalytic properties.
    Brown KA; Brick P; Blow DM
    Nature; 1987 Mar 26-Apr 1; 326(6111):416-8. PubMed ID: 3104791
    [TBL] [Abstract][Full Text] [Related]  

  • 4. cis-trans recognition and subunit-specific degradation of short-lived proteins.
    Johnson ES; Gonda DK; Varshavsky A
    Nature; 1990 Jul; 346(6281):287-91. PubMed ID: 2165217
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Structural basis for orthogonal tRNA specificities of tyrosyl-tRNA synthetases for genetic code expansion.
    Kobayashi T; Nureki O; Ishitani R; Yaremchuk A; Tukalo M; Cusack S; Sakamoto K; Yokoyama S
    Nat Struct Biol; 2003 Jun; 10(6):425-32. PubMed ID: 12754495
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Protein engineering 20 years on.
    Brannigan JA; Wilkinson AJ
    Nat Rev Mol Cell Biol; 2002 Dec; 3(12):964-70. PubMed ID: 12461562
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Structural organization in the serine proteases. I. Macromolecular specificity in limited proteolysis.
    Liebman MN
    Enzyme; 1986; 36(1-2):115-40. PubMed ID: 3539587
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Engineering specificity for folate into dihydrofolate reductase from Escherichia coli.
    Posner BA; Li L; Bethell R; Tsuji T; Benkovic SJ
    Biochemistry; 1996 Feb; 35(5):1653-63. PubMed ID: 8634297
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cooperativity and flexibility in enzyme evolution.
    Pabis A; Risso VA; Sanchez-Ruiz JM; Kamerlin SC
    Curr Opin Struct Biol; 2018 Feb; 48():83-92. PubMed ID: 29141202
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Unraveling the means to the end in ATP-dependent proteases.
    Hochstrasser M; Wang J
    Nat Struct Biol; 2001 Apr; 8(4):294-6. PubMed ID: 11276243
    [No Abstract]   [Full Text] [Related]  

  • 11. Computational protein design with a generalized Born solvent model: application to Asparaginyl-tRNA synthetase.
    Polydorides S; Amara N; Aubard C; Plateau P; Simonson T; Archontis G
    Proteins; 2011 Dec; 79(12):3448-68. PubMed ID: 21563215
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Aminoacyl-tRNA synthetases: general features and recognition of transfer RNAs.
    Schimmel PR; Söll D
    Annu Rev Biochem; 1979; 48():601-48. PubMed ID: 382994
    [No Abstract]   [Full Text] [Related]  

  • 13. Evolution of the tRNA(Tyr)/TyrRS aminoacylation systems.
    Bonnefond L; Giegé R; Rudinger-Thirion J
    Biochimie; 2005; 87(9-10):873-83. PubMed ID: 16164994
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Towards understanding the mechanisms of molecular recognition by computer simulations of ligand-protein interactions.
    Verkhivker GM; Rejto PA; Bouzida D; Arthurs S; Colson AB; Freer ST; Gehlhaar DK; Larson V; Luty BA; Marrone T; Rose PW
    J Mol Recognit; 1999; 12(6):371-89. PubMed ID: 10611647
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Binding of amino acid side-chains to S1 cavities of serine proteinases.
    Lu W; Apostol I; Qasim MA; Warne N; Wynn R; Zhang WL; Anderson S; Chiang YW; Ogin E; Rothberg I; Ryan K; Laskowski M
    J Mol Biol; 1997 Feb; 266(2):441-61. PubMed ID: 9047374
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Crystal structures of the binary and ternary complexes of 7 alpha-hydroxysteroid dehydrogenase from Escherichia coli.
    Tanaka N; Nonaka T; Tanabe T; Yoshimoto T; Tsuru D; Mitsui Y
    Biochemistry; 1996 Jun; 35(24):7715-30. PubMed ID: 8672472
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Function of the Neurospora crassa mitochondrial tyrosyl-tRNA synthetase in RNA splicing. Role of the idiosyncratic N-terminal extension and different modes of interaction with different group I introns.
    Mohr G; Rennard R; Cherniack AD; Stryker J; Lambowitz AM
    J Mol Biol; 2001 Mar; 307(1):75-92. PubMed ID: 11243805
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Structural characterization of a p-acetylphenylalanyl aminoacyl-tRNA synthetase.
    Turner JM; Graziano J; Spraggon G; Schultz PG
    J Am Chem Soc; 2005 Nov; 127(43):14976-7. PubMed ID: 16248607
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Kinetic and structural characterization of mutations of glycine 216 in alpha-lytic protease: a new target for engineering substrate specificity.
    Mace JE; Agard DA
    J Mol Biol; 1995 Dec; 254(4):720-36. PubMed ID: 7500345
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [Tricorn protease].
    Tamura T; Tamura N; Baumeister W
    Tanpakushitsu Kakusan Koso; 1997 Oct; 42(14 Suppl):2218-24. PubMed ID: 9366200
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 5.