BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

337 related articles for article (PubMed ID: 3896131)

  • 1. The creatine-creatine phosphate energy shuttle.
    Bessman SP; Carpenter CL
    Annu Rev Biochem; 1985; 54():831-62. PubMed ID: 3896131
    [No Abstract]   [Full Text] [Related]  

  • 2. Oxygen debt and high-energy phosphates in gastrocnemius muscle of the dog.
    Piiper J; Di Prampero PE; Cerretelli P
    Am J Physiol; 1968 Sep; 215(3):523-31. PubMed ID: 5670989
    [No Abstract]   [Full Text] [Related]  

  • 3. A possible role of the creatine phosphate-creatine pool in the regulation of the adenylate pool.
    Pezzini A; Conte A; Galbani P; Ronca-Testoni S
    Int J Tissue React; 1988; 10(2):107-10. PubMed ID: 3182186
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The creatine-creatine phosphate shuttle for energy transport-compartmentation of creatine phosphokinase in muscle.
    Erickson-Viitanen S; Geiger P; Yang WC; Bessman SP
    Adv Exp Med Biol; 1982; 151():115-25. PubMed ID: 6217725
    [No Abstract]   [Full Text] [Related]  

  • 5. Calculated equilibria of phosphocreatine and adenosine phosphates during utilization of high energy phosphate by muscle.
    McGilvery RW; Murray TW
    J Biol Chem; 1974 Sep; 249(18):5845-50. PubMed ID: 4369824
    [No Abstract]   [Full Text] [Related]  

  • 6. Compartmentation of high-energy phosphates in resting and beating heart cells.
    Arrio-Dupont M; De Nay D
    Biochim Biophys Acta; 1986 Sep; 851(2):249-56. PubMed ID: 3488761
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The creatine phosphate energy shuttle--the molecular asymmetry of a "pool".
    Bessman SP
    Anal Biochem; 1987 Mar; 161(2):519-23. PubMed ID: 3578809
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [The energy metabolism of skeletal muscle in relation to aging].
    Honorati MC; Ermini M; Stecconi R
    Boll Soc Ital Biol Sper; 1973 Oct; 49(20):1134-40. PubMed ID: 4802342
    [No Abstract]   [Full Text] [Related]  

  • 9. Cause and consequences of dynamic compartmentation of adenine nucleotides in the mitochondrial intermembrane space in respect to exchange of energy rich phosphates between cytosol and mitochondria.
    Gellerich FN; Kunz W
    Biomed Biochim Acta; 1987; 46(8-9):S545-8. PubMed ID: 3435511
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Phosphate metabolism in the electric organ.
    Cheng SC; Keynes RD
    Biochim Biophys Acta; 1967 Jul; 143(1):249-56. PubMed ID: 4292785
    [No Abstract]   [Full Text] [Related]  

  • 11. Creatine phosphate and adenine nucleotides in muscle from animals with muscular dystrophy.
    Farrell PM; Olson RE
    Am J Physiol; 1973 Nov; 225(5):1102-6. PubMed ID: 4745208
    [No Abstract]   [Full Text] [Related]  

  • 12. Compartmentation of adenine nucleotides and phosphocreatine shuttle in cardiac cells: some new evidence.
    Saks VA; Kuznetsov AV; Huchua ZA; Kupriyanov VV
    Adv Exp Med Biol; 1986; 194():103-16. PubMed ID: 3529852
    [No Abstract]   [Full Text] [Related]  

  • 13. [Energy metabolism in gastrocnemius muscles of frogs after tetanic contractions].
    Sidorenko MV
    Ukr Biokhim Zh; 1977; 49(3):61-5. PubMed ID: 888228
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Experimental depletion of creatine and phosphocreatine from skeletal muscle.
    Fitch CD; Jellinek M; Mueller EJ
    J Biol Chem; 1974 Feb; 249(4):1060-3. PubMed ID: 4814337
    [No Abstract]   [Full Text] [Related]  

  • 15. [Energy-rich phosphate compounds in the myocardium under the influence of adrenaline, noradrenaline and isoproterenol].
    Krautzberger W; Kammermeier H; Kammermeier B
    Pflugers Arch; 1969; 312(1):R6-7. PubMed ID: 5390286
    [No Abstract]   [Full Text] [Related]  

  • 16. Analysis of metabolic control: new insights using scaled creatine kinase model.
    Connett RJ
    Am J Physiol; 1988 Jun; 254(6 Pt 2):R949-59. PubMed ID: 2837918
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Respiratory control and the integration of heart high-energy phosphate metabolism by mitochondrial creatine kinase.
    Jacobus WE
    Annu Rev Physiol; 1985; 47():707-25. PubMed ID: 3888084
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Energy metabolism in skeletal muscles in experimental traumatic shock].
    Kazueva TV; Kovrizhnykh EE; Kuz'mina RI; Assur MV
    Vopr Med Khim; 1987; 33(4):40-2. PubMed ID: 3660738
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Chemical change and energy production during contraction of frog muscle: how are their time courses related?
    Curtin NA; Woledge RC
    J Physiol; 1979 Mar; 288():353-66. PubMed ID: 313981
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [Phosphorylated fractions and free adenine nucleotides of myopathic muscles in children].
    Berthillier G; Gautheron D; Robert JM
    C R Acad Hebd Seances Acad Sci D; 1967 Jul; 265(1):79-82. PubMed ID: 4383095
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 17.