These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

163 related articles for article (PubMed ID: 38961622)

  • 21. Nanofabricated quartz cylinders for angular trapping: DNA supercoiling torque detection.
    Deufel C; Forth S; Simmons CR; Dejgosha S; Wang MD
    Nat Methods; 2007 Mar; 4(3):223-5. PubMed ID: 17322891
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Orientation of flat particles in optical tweezers by linearly polarized light.
    Galajda P; Ormos P
    Opt Express; 2003 Mar; 11(5):446-51. PubMed ID: 19461751
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Introduction to Optical Tweezers: Background, System Designs, and Commercial Solutions.
    van Mameren J; Wuite GJL; Heller I
    Methods Mol Biol; 2018; 1665():3-23. PubMed ID: 28940061
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Measuring the complete force field of an optical trap.
    Jahnel M; Behrndt M; Jannasch A; Schäffer E; Grill SW
    Opt Lett; 2011 Apr; 36(7):1260-2. PubMed ID: 21479051
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Custom-Made Microspheres for Optical Tweezers.
    Jannasch A; Abdosamadi MK; Ramaiya A; De S; Ferro V; Sonnberger A; Schäffer E
    Methods Mol Biol; 2017; 1486():137-155. PubMed ID: 27844428
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Electromagnetic torque tweezers: a versatile approach for measurement of single-molecule twist and torque.
    Janssen XJ; Lipfert J; Jager T; Daudey R; Beekman J; Dekker NH
    Nano Lett; 2012 Jul; 12(7):3634-9. PubMed ID: 22642488
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Optical trap stiffness in the presence and absence of spherical aberrations.
    Vermeulen KC; Wuite GJ; Stienen GJ; Schmidt CF
    Appl Opt; 2006 Mar; 45(8):1812-9. PubMed ID: 16572698
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Optomechanical measurement of photon spin angular momentum and optical torque in integrated photonic devices.
    He L; Li H; Li M
    Sci Adv; 2016 Sep; 2(9):e1600485. PubMed ID: 27626072
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Synergistic Coordination of Chromatin Torsional Mechanics and Topoisomerase Activity.
    Le TT; Gao X; Park SH; Lee J; Inman JT; Lee JH; Killian JL; Badman RP; Berger JM; Wang MD
    Cell; 2019 Oct; 179(3):619-631.e15. PubMed ID: 31626768
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Underwound DNA under tension: structure, elasticity, and sequence-dependent behaviors.
    Sheinin MY; Forth S; Marko JF; Wang MD
    Phys Rev Lett; 2011 Sep; 107(10):108102. PubMed ID: 21981534
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Fabrication of birefringent nanocylinders for single-molecule force and torque measurement.
    Li PC; Chang JC; La Porta A; Yu ET
    Nanotechnology; 2014 Jun; 25(23):235304. PubMed ID: 24850364
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Optimized back-focal-plane interferometry directly measures forces of optically trapped particles.
    Farré A; Marsà F; Montes-Usategui M
    Opt Express; 2012 May; 20(11):12270-91. PubMed ID: 22714216
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Probing the mechanical properties, conformational changes, and interactions of nucleic acids with magnetic tweezers.
    Kriegel F; Ermann N; Lipfert J
    J Struct Biol; 2017 Jan; 197(1):26-36. PubMed ID: 27368129
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Mechanics and validation of an in vivo device to apply torsional loading to caudal vertebrae.
    Rizza R; Liu X
    J Biomech Eng; 2013 Aug; 135(8):81003. PubMed ID: 23722167
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Hemodynamic forces can be accurately measured in vivo with optical tweezers.
    Harlepp S; Thalmann F; Follain G; Goetz JG
    Mol Biol Cell; 2017 Nov; 28(23):3252-3260. PubMed ID: 28904205
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Measurement of the effective focal shift in an optical trap.
    Neuman KC; Abbondanzieri EA; Block SM
    Opt Lett; 2005 Jun; 30(11):1318-20. PubMed ID: 15981519
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Under-filling trapping objectives optimizes the use of the available laser power in optical tweezers.
    Mahamdeh M; Campos CP; Schäffer E
    Opt Express; 2011 Jun; 19(12):11759-68. PubMed ID: 21716408
    [TBL] [Abstract][Full Text] [Related]  

  • 38. High-Performance Image-Based Measurements of Biological Forces and Interactions in a Dual Optical Trap.
    Killian JL; Inman JT; Wang MD
    ACS Nano; 2018 Dec; 12(12):11963-11974. PubMed ID: 30457331
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Optical trapping force and torque on spheroidal Rayleigh particles with arbitrary spatial orientations.
    Li M; Yan S; Yao B; Liang Y; Han G; Zhang P
    J Opt Soc Am A Opt Image Sci Vis; 2016 Jul; 33(7):1341-7. PubMed ID: 27409691
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Improved axial trapping with holographic optical tweezers.
    Pollari R; Milstein JN
    Opt Express; 2015 Nov; 23(22):28857-67. PubMed ID: 26561154
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.