These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
206 related articles for article (PubMed ID: 38962430)
1. Detectability of hemodynamic oscillations in cerebral cortex through functional near-infrared spectroscopy: a simulation study. Contini L; Amendola C; Contini D; Torricelli A; Spinelli L; Re R Neurophotonics; 2024 Jul; 11(3):035001. PubMed ID: 38962430 [TBL] [Abstract][Full Text] [Related]
2. How much do time-domain functional near-infrared spectroscopy (fNIRS) moments improve estimation of brain activity over traditional fNIRS? Ortega-Martinez A; Rogers D; Anderson J; Farzam P; Gao Y; Zimmermann B; Yücel MA; Boas DA Neurophotonics; 2023 Jan; 10(1):013504. PubMed ID: 36284602 [TBL] [Abstract][Full Text] [Related]
3. Time domain functional NIRS imaging for human brain mapping. Torricelli A; Contini D; Pifferi A; Caffini M; Re R; Zucchelli L; Spinelli L Neuroimage; 2014 Jan; 85 Pt 1():28-50. PubMed ID: 23747285 [TBL] [Abstract][Full Text] [Related]
4. Quantitative Comparison of Analytical Solution and Finite Element Method for Investigation of Near-infrared Light Propagation in Brain Tissue Model. Borjkhani H; Setarehdan SK Basic Clin Neurosci; 2023; 14(2):193-202. PubMed ID: 38107524 [TBL] [Abstract][Full Text] [Related]
5. Development of a Monte Carlo-wave model to simulate time domain diffuse correlation spectroscopy measurements from first principles. Cheng X; Chen H; Sie EJ; Marsili F; Boas DA J Biomed Opt; 2022 Feb; 27(8):. PubMed ID: 35199501 [TBL] [Abstract][Full Text] [Related]
6. The Temporal Confounding Effects of Extra-cerebral Contamination Factors on the Hemodynamic Signal Measured by Functional Near-Infrared Spectroscopy. Zarei M; Ansari MA; Zare K J Lasers Med Sci; 2019; 10(Suppl 1):S73-S81. PubMed ID: 32021678 [No Abstract] [Full Text] [Related]
7. Reliable Fast (20 Hz) Acquisition Rate by a TD fNIRS Device: Brain Resting-State Oscillation Studies. Re R; Pirovano I; Contini D; Amendola C; Contini L; Frabasile L; Levoni P; Torricelli A; Spinelli L Sensors (Basel); 2022 Dec; 23(1):. PubMed ID: 36616792 [TBL] [Abstract][Full Text] [Related]
8. Frequency-domain analysis of fNIRS fluctuations induced by rhythmic mental arithmetic. Molina-Rodríguez S; Mirete-Fructuoso M; Martínez LM; Ibañez-Ballesteros J Psychophysiology; 2022 Oct; 59(10):e14063. PubMed ID: 35394075 [TBL] [Abstract][Full Text] [Related]
10. Kernel Flow: a high channel count scalable time-domain functional near-infrared spectroscopy system. Ban HY; Barrett GM; Borisevich A; Chaturvedi A; Dahle JL; Dehghani H; Dubois J; Field RM; Gopalakrishnan V; Gundran A; Henninger M; Ho WC; Hughes HD; Jin R; Kates-Harbeck J; Landy T; Leggiero M; Lerner G; Aghajan ZM; Moon M; Olvera I; Park S; Patel MJ; Perdue KL; Siepser B; Sorgenfrei S; Sun N; Szczepanski V; Zhang M; Zhu Z J Biomed Opt; 2022 Jan; 27(7):. PubMed ID: 35043610 [TBL] [Abstract][Full Text] [Related]
11. Characterization of Mayer-wave oscillations in functional near-infrared spectroscopy using a physiologically informed model of the neural power spectra. Luke R; Shader MJ; McAlpine D Neurophotonics; 2021 Oct; 8(4):041001. PubMed ID: 34901310 [No Abstract] [Full Text] [Related]
12. Quantitative evaluation of frequency domain measurements in high density diffuse optical tomography. Perkins GA; Eggebrecht AT; Dehghani H J Biomed Opt; 2021 May; 26(5):. PubMed ID: 33949158 [TBL] [Abstract][Full Text] [Related]
13. Comparison of functional activation responses from the auditory cortex derived using multi-distance frequency domain and continuous wave near-infrared spectroscopy. Mohammad PPS; Isarangura S; Eddins A; Parthasarathy AB Neurophotonics; 2021 Oct; 8(4):045004. PubMed ID: 34926716 [No Abstract] [Full Text] [Related]
14. Characterization of the relative contributions from systemic physiological noise to whole-brain resting-state functional near-infrared spectroscopy data using single-channel independent component analysis. Aarabi A; Huppert TJ Neurophotonics; 2016 Apr; 3(2):025004. PubMed ID: 27335886 [TBL] [Abstract][Full Text] [Related]
15. Characterizing autism spectrum disorder by deep learning spontaneous brain activity from functional near-infrared spectroscopy. Xu L; Liu Y; Yu J; Li X; Yu X; Cheng H; Li J J Neurosci Methods; 2020 Feb; 331():108538. PubMed ID: 31794776 [TBL] [Abstract][Full Text] [Related]
16. Network organization of resting-state cerebral hemodynamics and their aliasing contributions measured by functional near-infrared spectroscopy. Zhang F; Khan AF; Ding L; Yuan H J Neural Eng; 2023 Jan; 20(1):. PubMed ID: 36535032 [No Abstract] [Full Text] [Related]
17. Investigation of functional near-infrared spectroscopy signal quality and development of the hemodynamic phase correlation signal. Hakim U; Pinti P; Noah AJ; Zhang X; Burgess P; Hamilton A; Hirsch J; Tachtsidis I Neurophotonics; 2022 Apr; 9(2):025001. PubMed ID: 35599691 [No Abstract] [Full Text] [Related]
18. Exclusive detection of cerebral hemodynamics in functional near-infrared spectroscopy by reflectance modulation of the scalp surface. Kawaguchi H; Tanikawa Y; Yamada T J Biomed Opt; 2020 Aug; 25(8):1-16. PubMed ID: 32762174 [TBL] [Abstract][Full Text] [Related]
19. Characterizing reproducibility of cerebral hemodynamic responses when applying short-channel regression in functional near-infrared spectroscopy. Wyser DG; Kanzler CM; Salzmann L; Lambercy O; Wolf M; Scholkmann F; Gassert R Neurophotonics; 2022 Jan; 9(1):015004. PubMed ID: 35265732 [No Abstract] [Full Text] [Related]
20. Diffuse correlation spectroscopy measurements of blood flow using 1064 nm light. Carp S; Tamborini D; Mazumder D; Wu KC; Robinson M; Stephens K; Shatrovoy O; Lue N; Ozana N; Blackwell M; Franceschini MA J Biomed Opt; 2020 Sep; 25(9):. PubMed ID: 32996299 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]