These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

131 related articles for article (PubMed ID: 38962568)

  • 1. Radiative Cooling Properties of Portlandite and Tobermorite: Two Cementitious Minerals of Great Relevance in Concrete Science and Technology.
    Dolado JS; Goracci G; Arrese-Igor S; Ayuela A; Torres A; Liberal I; Beruete M; Gaitero JJ; Cagnoni M; Cappelluti F
    ACS Appl Opt Mater; 2024 Jun; 2(6):1000-1009. PubMed ID: 38962568
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The Impact of NaOH on the Micro-Mechanical Properties of the Interface Transition Zone in Low-Carbon Concrete.
    Li Y; Wang H; Wei L; Guo H; Ma K
    Materials (Basel); 2024 Jan; 17(1):. PubMed ID: 38204110
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Spectrally Selective Nanoparticle Mixture Coating for Passive Daytime Radiative Cooling.
    Chae D; Lim H; So S; Son S; Ju S; Kim W; Rho J; Lee H
    ACS Appl Mater Interfaces; 2021 May; 13(18):21119-21126. PubMed ID: 33926186
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Ultra-broadband all-dielectric metamaterial thermal emitter for passive radiative cooling.
    Kong A; Cai B; Shi P; Yuan XC
    Opt Express; 2019 Oct; 27(21):30102-30115. PubMed ID: 31684263
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Suppressed-scattering spectral windows for radiative cooling applications.
    Pérez-Escudero JM; Torres-García AE; Lezaun C; Caggiano A; Peralta I; Dolado JS; Beruete M; Liberal I
    Opt Express; 2023 Feb; 31(4):6314-6326. PubMed ID: 36823891
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Anti-Environmental Aging Passive Daytime Radiative Cooling.
    Song J; Shen Q; Shao H; Deng X
    Adv Sci (Weinh); 2024 Mar; 11(10):e2305664. PubMed ID: 38148594
    [TBL] [Abstract][Full Text] [Related]  

  • 7. From Chitosan to Chitin: Bio-Inspired Thin Films for Passive Daytime Radiative Cooling.
    Lauster T; Mauel A; Herrmann K; Veitengruber V; Song Q; Senker J; Retsch M
    Adv Sci (Weinh); 2023 Apr; 10(11):e2206616. PubMed ID: 36793085
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Spectrally Selective Inorganic-Based Multilayer Emitter for Daytime Radiative Cooling.
    Chae D; Kim M; Jung PH; Son S; Seo J; Liu Y; Lee BJ; Lee H
    ACS Appl Mater Interfaces; 2020 Feb; 12(7):8073-8081. PubMed ID: 31990166
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Development of Microparticle Implanted PVDF-HF Polymer Coating on Building Material for Daytime Radiative Cooling.
    Saeed U; Altamimi MMS; Al-Turaif H
    Polymers (Basel); 2024 Apr; 16(9):. PubMed ID: 38732670
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Recent Progress in Daytime Radiative Cooling: Advanced Material Designs and Applications.
    Zhang Q; Wang S; Wang X; Jiang Y; Li J; Xu W; Zhu B; Zhu J
    Small Methods; 2022 Apr; 6(4):e2101379. PubMed ID: 35212488
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Scalable and hierarchically designed polymer film as a selective thermal emitter for high-performance all-day radiative cooling.
    Li D; Liu X; Li W; Lin Z; Zhu B; Li Z; Li J; Li B; Fan S; Xie J; Zhu J
    Nat Nanotechnol; 2021 Feb; 16(2):153-158. PubMed ID: 33199884
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Whitish daytime radiative cooling using diffuse reflection of non-resonant silica nanoshells.
    Suichi T; Ishikawa A; Tanaka T; Hayashi Y; Tsuruta K
    Sci Rep; 2020 Apr; 10(1):6486. PubMed ID: 32300158
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The synergistic hydration mechanism and environmental safety of multiple solid wastes in red mud-based cementitious materials.
    Zhu J; Yue H; Ma L; Li Z; Bai R
    Environ Sci Pollut Res Int; 2023 Jul; 30(32):79241-79257. PubMed ID: 37286836
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Daytime Sub-Ambient Radiative Cooling with Vivid Structural Colors Mediated by Coupled Nanocavities.
    Jin S; Xiao M; Zhang W; Wang B; Zhao C
    ACS Appl Mater Interfaces; 2022 Dec; 14(49):54676-54687. PubMed ID: 36454716
    [TBL] [Abstract][Full Text] [Related]  

  • 15. High-Performance Daytime Radiative Cooler and Near-Ideal Selective Emitter Enabled by Transparent Sapphire Substrate.
    Chae D; Son S; Liu Y; Lim H; Lee H
    Adv Sci (Weinh); 2020 Oct; 7(19):2001577. PubMed ID: 33042765
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Phase-change materials reinforced intelligent paint for efficient daytime radiative cooling.
    Qin M; Xiong F; Aftab W; Shi J; Han H; Zou R
    iScience; 2022 Jul; 25(7):104584. PubMed ID: 35784790
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Structural and Mechanical Properties of Doped Tobermorite.
    Li X; Zhang H; Zhan H; Tang Y
    Nanomaterials (Basel); 2023 Aug; 13(16):. PubMed ID: 37630864
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Selective spectral absorption of nanofibers for color-preserving daytime radiative cooling.
    Li X; Xu H; Yang Y; Li F; Ramakrishna S; Yu J; Ji D; Qin X
    Mater Horiz; 2023 Jul; 10(7):2487-2495. PubMed ID: 37039748
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Iridescent Daytime Radiative Cooling with No Absorption Peaks in the Visible Range.
    Ding Z; Pattelli L; Xu H; Sun W; Li X; Pan L; Zhao J; Wang C; Zhang X; Song Y; Qiu J; Li Y; Yang R
    Small; 2022 Jun; 18(25):e2202400. PubMed ID: 35587771
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Colloidal inorganic nano- and microparticles for passive daytime radiative cooling.
    Woo HY; Choi Y; Chung H; Lee DW; Paik T
    Nano Converg; 2023 Apr; 10(1):17. PubMed ID: 37071232
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.