These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

113 related articles for article (PubMed ID: 38962662)

  • 41. Evaluating Large Language Models for the National Premedical Exam in India: Comparative Analysis of GPT-3.5, GPT-4, and Bard.
    Farhat F; Chaudhry BM; Nadeem M; Sohail SS; Madsen DØ
    JMIR Med Educ; 2024 Feb; 10():e51523. PubMed ID: 38381486
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Can large language models replace humans in systematic reviews? Evaluating GPT-4's efficacy in screening and extracting data from peer-reviewed and grey literature in multiple languages.
    Khraisha Q; Put S; Kappenberg J; Warraitch A; Hadfield K
    Res Synth Methods; 2024 Jul; 15(4):616-626. PubMed ID: 38484744
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Identification of asthma control factor in clinical notes using a hybrid deep learning model.
    Agnikula Kshatriya BS; Sagheb E; Wi CI; Yoon J; Seol HY; Juhn Y; Sohn S
    BMC Med Inform Decis Mak; 2021 Nov; 21(Suppl 7):272. PubMed ID: 34753481
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Comparison of Prompt Engineering and Fine-Tuning Strategies in Large Language Models in the Classification of Clinical Notes.
    Zhang X; Talukdar N; Vemulapalli S; Ahn S; Wang J; Meng H; Bin Murtaza SM; Leshchiner D; Dave AA; Joseph DF; Witteveen-Lane M; Chesla D; Zhou J; Chen B
    AMIA Jt Summits Transl Sci Proc; 2024; 2024():478-487. PubMed ID: 38827053
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Comparison of Prompt Engineering and Fine-Tuning Strategies in Large Language Models in the Classification of Clinical Notes.
    Zhang X; Talukdar N; Vemulapalli S; Ahn S; Wang J; Meng H; Murtaza SMB; Leshchiner D; Dave AA; Joseph DF; Witteveen-Lane M; Chesla D; Zhou J; Chen B
    medRxiv; 2024 Feb; ():. PubMed ID: 38370673
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Leveraging weak supervision to perform named entity recognition in electronic health records progress notes to identify the ophthalmology exam.
    Wang SY; Huang J; Hwang H; Hu W; Tao S; Hernandez-Boussard T
    Int J Med Inform; 2022 Nov; 167():104864. PubMed ID: 36179600
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Clinical Relation Extraction Toward Drug Safety Surveillance Using Electronic Health Record Narratives: Classical Learning Versus Deep Learning.
    Munkhdalai T; Liu F; Yu H
    JMIR Public Health Surveill; 2018 Apr; 4(2):e29. PubMed ID: 29695376
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Mining Clinical Notes for Physical Rehabilitation Exercise Information: Natural Language Processing Algorithm Development and Validation Study.
    Sivarajkumar S; Gao F; Denny P; Aldhahwani B; Visweswaran S; Bove A; Wang Y
    JMIR Med Inform; 2024 Apr; 12():e52289. PubMed ID: 38568736
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Evaluating Large Language Models in Extracting Cognitive Exam Dates and Scores.
    Zhang H; Jethani N; Jones S; Genes N; Major VJ; Jaffe IS; Cardillo AB; Heilenbach N; Ali NF; Bonanni LJ; Clayburn AJ; Khera Z; Sadler EC; Prasad J; Schlacter J; Liu K; Silva B; Montgomery S; Kim EJ; Lester J; Hill TM; Avoricani A; Chervonski E; Davydov J; Small W; Chakravartty E; Grover H; Dodson JA; Brody AA; Aphinyanaphongs Y; Masurkar A; Razavian N
    medRxiv; 2024 Feb; ():. PubMed ID: 38405784
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Natural Language Processing of Clinical Notes on Chronic Diseases: Systematic Review.
    Sheikhalishahi S; Miotto R; Dudley JT; Lavelli A; Rinaldi F; Osmani V
    JMIR Med Inform; 2019 Apr; 7(2):e12239. PubMed ID: 31066697
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Large language models facilitate the generation of electronic health record phenotyping algorithms.
    Yan C; Ong HH; Grabowska ME; Krantz MS; Su WC; Dickson AL; Peterson JF; Feng Q; Roden DM; Stein CM; Kerchberger VE; Malin BA; Wei WQ
    J Am Med Inform Assoc; 2024 Sep; 31(9):1994-2001. PubMed ID: 38613820
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Large Language Models Facilitate the Generation of Electronic Health Record Phenotyping Algorithms.
    Yan C; Ong HH; Grabowska ME; Krantz MS; Su WC; Dickson AL; Peterson JF; Feng Q; Roden DM; Stein CM; Kerchberger VE; Malin BA; Wei WQ
    medRxiv; 2024 Feb; ():. PubMed ID: 38196578
    [TBL] [Abstract][Full Text] [Related]  

  • 53. A natural language processing pipeline to synthesize patient-generated notes toward improving remote care and chronic disease management: a cystic fibrosis case study.
    Hussain SA; Sezgin E; Krivchenia K; Luna J; Rust S; Huang Y
    JAMIA Open; 2021 Jul; 4(3):ooab084. PubMed ID: 34604710
    [TBL] [Abstract][Full Text] [Related]  

  • 54. De-identifying free text of Japanese electronic health records.
    Kajiyama K; Horiguchi H; Okumura T; Morita M; Kano Y
    J Biomed Semantics; 2020 Sep; 11(1):11. PubMed ID: 32958039
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Classifying social determinants of health from unstructured electronic health records using deep learning-based natural language processing.
    Han S; Zhang RF; Shi L; Richie R; Liu H; Tseng A; Quan W; Ryan N; Brent D; Tsui FR
    J Biomed Inform; 2022 Mar; 127():103984. PubMed ID: 35007754
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Developing a FHIR-based EHR phenotyping framework: A case study for identification of patients with obesity and multiple comorbidities from discharge summaries.
    Hong N; Wen A; Stone DJ; Tsuji S; Kingsbury PR; Rasmussen LV; Pacheco JA; Adekkanattu P; Wang F; Luo Y; Pathak J; Liu H; Jiang G
    J Biomed Inform; 2019 Nov; 99():103310. PubMed ID: 31622801
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Quality of Answers of Generative Large Language Models vs Peer Patients for Interpreting Lab Test Results for Lay Patients: Evaluation Study.
    He Z; Bhasuran B; Jin Q; Tian S; Hanna K; Shavor C; Arguello LG; Murray P; Lu Z
    ArXiv; 2024 Jan; ():. PubMed ID: 38529075
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Performance of GPT-3.5 and GPT-4 on the Japanese Medical Licensing Examination: Comparison Study.
    Takagi S; Watari T; Erabi A; Sakaguchi K
    JMIR Med Educ; 2023 Jun; 9():e48002. PubMed ID: 37384388
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Sample Size Considerations for Fine-Tuning Large Language Models for Named Entity Recognition Tasks: Methodological Study.
    Majdik ZP; Graham SS; Shiva Edward JC; Rodriguez SN; Karnes MS; Jensen JT; Barbour JB; Rousseau JF
    JMIR AI; 2024 May; 3():e52095. PubMed ID: 38875593
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Identifying Patient Populations in Texts Describing Drug Approvals Through Deep Learning-Based Information Extraction: Development of a Natural Language Processing Algorithm.
    Gendrin A; Souliotis L; Loudon-Griffiths J; Aggarwal R; Amoako D; Desouza G; Dimitrievska S; Metcalfe P; Louvet E; Sahni H
    JMIR Form Res; 2023 Jun; 7():e44876. PubMed ID: 37347514
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.