These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
124 related articles for article (PubMed ID: 38963077)
1. Development of Modular Nitrenium Bipolar Electrolytes for Possible Applications in Symmetric Redox Flow Batteries. Varenikov A; Gandelman M; Sigman MS J Am Chem Soc; 2024 Jul; 146(28):19474-19488. PubMed ID: 38963077 [TBL] [Abstract][Full Text] [Related]
2. Development of high-voltage bipolar redox-active organic molecules through the electronic coupling of catholyte and anolyte structures. Tracy JS; Horst ES; Roytman VA; Toste FD Chem Sci; 2022 Sep; 13(36):10806-10814. PubMed ID: 36320695 [TBL] [Abstract][Full Text] [Related]
3. Development of the Squaramide Scaffold for High Potential and Multielectron Catholytes for Use in Redox Flow Batteries. Tracy JS; Broderick CH; Toste FD J Am Chem Soc; 2024 May; 146(17):11740-11755. PubMed ID: 38629752 [TBL] [Abstract][Full Text] [Related]
4. Evolutionary Design of Low Molecular Weight Organic Anolyte Materials for Applications in Nonaqueous Redox Flow Batteries. Sevov CS; Brooner RE; Chénard E; Assary RS; Moore JS; Rodríguez-López J; Sanford MS J Am Chem Soc; 2015 Nov; 137(45):14465-72. PubMed ID: 26514666 [TBL] [Abstract][Full Text] [Related]
5. A Protocol for Electrochemical Evaluations and State of Charge Diagnostics of a Symmetric Organic Redox Flow Battery. Duan W; Vemuri RS; Hu D; Yang Z; Wei X J Vis Exp; 2017 Feb; (120):. PubMed ID: 28287515 [TBL] [Abstract][Full Text] [Related]
6. A Physical Organic Chemistry Approach to Developing Cyclopropenium-Based Energy Storage Materials for Redox Flow Batteries. Walser-Kuntz R; Yan Y; Sigman M; Sanford MS Acc Chem Res; 2023 May; 56(10):1239-1250. PubMed ID: 37094181 [TBL] [Abstract][Full Text] [Related]
7. Realization of an Asymmetric Non-Aqueous Redox Flow Battery through Molecular Design to Minimize Active Species Crossover and Decomposition. Shrestha A; Hendriks KH; Sigman MS; Minteer SD; Sanford MS Chemistry; 2020 Apr; 26(24):5369-5373. PubMed ID: 32049389 [TBL] [Abstract][Full Text] [Related]
9. Pyridyl group design in viologens for anolyte materials in organic redox flow batteries. Chen C; Zhang S; Zhu Y; Qian Y; Niu Z; Ye J; Zhao Y; Zhang X RSC Adv; 2018 May; 8(34):18762-18770. PubMed ID: 35539647 [TBL] [Abstract][Full Text] [Related]
10. Benzidine Derivatives: A Class of High Redox Potential Molecules for Aqueous Organic Flow Batteries. Liu X; Li T; Zhang C; Li X Angew Chem Int Ed Engl; 2023 Aug; 62(34):e202307796. PubMed ID: 37389543 [TBL] [Abstract][Full Text] [Related]
11. Bipolar Verdazyl Radicals for Symmetrical Batteries: Properties and Stability in All States of Charge. Steen JS; de Vries F; Hjelm J; Otten E Chemphyschem; 2023 Feb; 24(4):e202200779. PubMed ID: 36317641 [TBL] [Abstract][Full Text] [Related]
12. Development of High Energy Density Diaminocyclopropenium-Phenothiazine Hybrid Catholytes for Non-Aqueous Redox Flow Batteries. Yan Y; Vogt DB; Vaid TP; Sigman MS; Sanford MS Angew Chem Int Ed Engl; 2021 Dec; 60(52):27039-27045. PubMed ID: 34672070 [TBL] [Abstract][Full Text] [Related]
13. Exploring the Versatility of Membrane-Free Battery Concept Using Different Combinations of Immiscible Redox Electrolytes. Navalpotro P; Sierra N; Trujillo C; Montes I; Palma J; Marcilla R ACS Appl Mater Interfaces; 2018 Dec; 10(48):41246-41256. PubMed ID: 30398052 [TBL] [Abstract][Full Text] [Related]
14. Molecular engineering of dihydroxyanthraquinone-based electrolytes for high-capacity aqueous organic redox flow batteries. Huang S; Zhang H; Salla M; Zhuang J; Zhi Y; Wang X; Wang Q Nat Commun; 2022 Aug; 13(1):4746. PubMed ID: 35961966 [TBL] [Abstract][Full Text] [Related]
15. A Highly Stable, Capacity Dense Carboxylate Viologen Anolyte towards Long-Duration Energy Storage. Wu W; Wang AP; Luo J; Liu TL Angew Chem Int Ed Engl; 2023 Feb; 62(7):e202216662. PubMed ID: 36526569 [TBL] [Abstract][Full Text] [Related]
16. Designer Ferrocene Catholyte for Aqueous Organic Flow Batteries. Chen Q; Li Y; Liu Y; Sun P; Yang Z; Xu T ChemSusChem; 2021 Mar; 14(5):1295-1301. PubMed ID: 33200881 [TBL] [Abstract][Full Text] [Related]
17. Recent Development of Electrolytes for Aqueous Organic Redox Flow Batteries (Aorfbs): Current Status, Challenges, and Prospects. Mansha M; Ayub A; Khan IA; Ali S; Alzahrani AS; Khan M; Arshad M; Rauf A; Akram Khan S Chem Rec; 2024 Jan; 24(1):e202300284. PubMed ID: 38010347 [TBL] [Abstract][Full Text] [Related]
18. Investigation of Iron(III) Tetraphenylporphyrin as a Redox Flow Battery Anolyte: Unexpected Side Reactivity with the Electrolyte. Mitchell NH; Elgrishi N J Phys Chem C Nanomater Interfaces; 2023 Jun; 127(23):10938-10946. PubMed ID: 37342204 [TBL] [Abstract][Full Text] [Related]
19. Redox Active Polymers as Soluble Nanomaterials for Energy Storage. Burgess M; Moore JS; Rodríguez-López J Acc Chem Res; 2016 Nov; 49(11):2649-2657. PubMed ID: 27673336 [TBL] [Abstract][Full Text] [Related]
20. Recent Developments on Electroactive Organic Electrolytes for Non-Aqueous Redox Flow Batteries: Current Status, Challenges, and Prospects. Mansha M; Anam A; Akram Khan S; Saeed Alzahrani A; Khan M; Ahmad A; Arshad M; Ali S Chem Rec; 2024 Jan; 24(1):e202300233. PubMed ID: 37695078 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]