These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
124 related articles for article (PubMed ID: 38963077)
21. Stable Operation of Aqueous Organic Redox Flow Batteries in Air Atmosphere. Kong T; Liu J; Zhou X; Xu J; Xie Y; Chen J; Li X; Wang Y Angew Chem Int Ed Engl; 2023 Feb; 62(6):e202214819. PubMed ID: 36495124 [TBL] [Abstract][Full Text] [Related]
22. A Multielectron and High-Potential Spirobifluorene-Based Posolyte for Aqueous Redox Flow Batteries. Pang S; Li L; Ji Y; Wang P Angew Chem Int Ed Engl; 2024 Oct; 63(42):e202410226. PubMed ID: 39032161 [TBL] [Abstract][Full Text] [Related]
24. Tunable Redox-Active Triazenyl-Carbene Platforms: A New Class of Anolytes for Non-Aqueous Organic Redox Flow Batteries. Back J; Kwon G; Byeon JE; Song H; Kang K; Lee E ACS Appl Mater Interfaces; 2020 Aug; 12(33):37338-37345. PubMed ID: 32692157 [TBL] [Abstract][Full Text] [Related]
26. A pH-Neutral, Aqueous Redox Flow Battery with a 3600-Cycle Lifetime: Micellization-Enabled High Stability and Crossover Suppression. Chai J; Wang X; Lashgari A; Williams CK; Jiang JJ ChemSusChem; 2020 Aug; 13(16):4069-4077. PubMed ID: 32658334 [TBL] [Abstract][Full Text] [Related]
27. Organic Electrode Materials for Energy Storage and Conversion: Mechanism, Characteristics, and Applications. Yuan S; Huang X; Kong T; Yan L; Wang Y Acc Chem Res; 2024 May; 57(10):1550-1563. PubMed ID: 38723018 [TBL] [Abstract][Full Text] [Related]
28. Bis(diisopropylamino)cyclopropenium-arene Cations as High Oxidation Potential and High Stability Catholytes for Non-aqueous Redox Flow Batteries. Yan Y; Vaid TP; Sanford MS J Am Chem Soc; 2020 Oct; 142(41):17564-17571. PubMed ID: 33006474 [TBL] [Abstract][Full Text] [Related]
29. An Energy-Dense, Powerful, Robust Bipolar Zinc-Ferrocene Redox-Flow Battery. Luo J; Hu B; Hu M; Wu W; Liu TL Angew Chem Int Ed Engl; 2022 Jul; 61(30):e202204030. PubMed ID: 35523722 [TBL] [Abstract][Full Text] [Related]
30. A Sustainable Redox-Flow Battery with an Aluminum-Based, Deep-Eutectic-Solvent Anolyte. Zhang C; Ding Y; Zhang L; Wang X; Zhao Y; Zhang X; Yu G Angew Chem Int Ed Engl; 2017 Jun; 56(26):7454-7459. PubMed ID: 28494114 [TBL] [Abstract][Full Text] [Related]
31. Radical Compatibility with Nonaqueous Electrolytes and Its Impact on an All-Organic Redox Flow Battery. Wei X; Xu W; Huang J; Zhang L; Walter E; Lawrence C; Vijayakumar M; Henderson WA; Liu T; Cosimbescu L; Li B; Sprenkle V; Wang W Angew Chem Int Ed Engl; 2015 Jul; 54(30):8684-7. PubMed ID: 25891480 [TBL] [Abstract][Full Text] [Related]
32. High Energy Density, Asymmetric, Nonaqueous Redox Flow Batteries without a Supporting Electrolyte. Yan Y; Sitaula P; Odom SA; Vaid TP ACS Appl Mater Interfaces; 2022 Oct; ():. PubMed ID: 36315441 [TBL] [Abstract][Full Text] [Related]
33. High-Power Near-Neutral Aqueous All Organic Redox Flow Battery Enabled with a Pair of Anionic Redox Species. Gao M; Salla M; Song Y; Wang Q Angew Chem Int Ed Engl; 2022 Oct; 61(41):e202208223. PubMed ID: 35997142 [TBL] [Abstract][Full Text] [Related]
34. Mechanism-Based Design of a High-Potential Catholyte Enables a 3.2 V All-Organic Nonaqueous Redox Flow Battery. Yan Y; Robinson SG; Sigman MS; Sanford MS J Am Chem Soc; 2019 Sep; 141(38):15301-15306. PubMed ID: 31503480 [TBL] [Abstract][Full Text] [Related]
35. A pH-Neutral, Metal-Free Aqueous Organic Redox Flow Battery Employing an Ammonium Anthraquinone Anolyte. Hu B; Luo J; Hu M; Yuan B; Liu TL Angew Chem Int Ed Engl; 2019 Nov; 58(46):16629-16636. PubMed ID: 31381221 [TBL] [Abstract][Full Text] [Related]
36. Grafting and Solubilization of Redox-Active Organic Materials for Aqueous Redox Flow Batteries. Chen R; Zhang P; Chang Z; Yan J; Kraus T ChemSusChem; 2023 Apr; 16(8):e202201993. PubMed ID: 36625759 [TBL] [Abstract][Full Text] [Related]
37. Eutectic Electrolytes as a Promising Platform for Next-Generation Electrochemical Energy Storage. Zhang C; Zhang L; Yu G Acc Chem Res; 2020 Aug; 53(8):1648-1659. PubMed ID: 32672933 [TBL] [Abstract][Full Text] [Related]
38. Novel, Stable Catholyte for Aqueous Organic Redox Flow Batteries: Symmetric Cell Study of Hydroquinones with High Accessible Capacity. Yang X; Garcia SN; Janoschka T; Kónya D; Hager MD; Schubert US Molecules; 2021 Jun; 26(13):. PubMed ID: 34201612 [TBL] [Abstract][Full Text] [Related]
39. Macromolecular Design Strategies for Preventing Active-Material Crossover in Non-Aqueous All-Organic Redox-Flow Batteries. Doris SE; Ward AL; Baskin A; Frischmann PD; Gavvalapalli N; Chénard E; Sevov CS; Prendergast D; Moore JS; Helms BA Angew Chem Int Ed Engl; 2017 Feb; 56(6):1595-1599. PubMed ID: 28071835 [TBL] [Abstract][Full Text] [Related]
40. Electrochemical implications of modulating the solvation shell around redox active organic species in aqueous organic redox flow batteries. Sharma K; Sankarasubramanian S; Parrondo J; Ramani V Proc Natl Acad Sci U S A; 2021 Aug; 118(34):. PubMed ID: 34417296 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]