BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

104 related articles for article (PubMed ID: 38963139)

  • 1. Radiocaesium in mosses from the Kopački rit Nature Park in Croatia: searching for undeclared releases from nuclear facilities in war-torn Ukraine.
    Miljanić N; Zauner B; Babić D; Petrinec B
    Arh Hig Rada Toksikol; 2024 Jun; 75(2):155-158. PubMed ID: 38963139
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mosses in the Kopački Rit Nature Park, Croatia, as bioindicators of a potential radioactive contamination of the middle Danube River basin.
    Petrinec B; Babić D; Meštrović T; Bogdanović T; Popijač M; Rašeta D
    Sci Rep; 2022 Jul; 12(1):11617. PubMed ID: 35804079
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mosses and some mushroom species as bioindicators of radiocaesium contamination and risk assessment.
    Marović G; Franić Z; Sencar J; Bituh T; Vugrinec O
    Coll Antropol; 2008 Oct; 32 Suppl 2():109-14. PubMed ID: 19138015
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Estimation of intakes of 131I, 137Cs and 134Cs after the Chernobyl accident.
    Hölgye Z; Malátová I
    Radiat Prot Dosimetry; 2012 Jul; 150(4):504-7. PubMed ID: 22090416
    [TBL] [Abstract][Full Text] [Related]  

  • 5. [Radionuclide pollution of the Vitebsk region].
    Kirilov LM; Bobrovskaia GS; Zhavoronok SV; Ivanovskiĭ VV; Krylov IuV; Lisitsa PN; Medvedev MN; Panashchenko VV
    Radiats Biol Radioecol; 1997; 37(6):932-5. PubMed ID: 9467650
    [TBL] [Abstract][Full Text] [Related]  

  • 6. IMPACT ON ABSORBED DOSE RATE IN AIR IN KANTO REGION BY FUKUSHIMA DAIICHI NUCLEAR POWER PLANT ACCIDENT.
    Inoue K; Arai M; Tsuruoka H; Saito K; Fujisawa M; Nakazawa S; Veerasamy N; Fukushi M
    Radiat Prot Dosimetry; 2019 Oct; 184(3-4):500-503. PubMed ID: 31330022
    [TBL] [Abstract][Full Text] [Related]  

  • 7. IMPACT OF THE RIVNE NPP ACTIVITY ON NATURAL AND SOCIAL ENVIRONMENT OF THE CONTROL AREA.
    Prylypko VA; Morozova MM; Bondarenko IV; Petrychenko OO; Romanenko OM; Tuz KK; Ozerova YY
    Probl Radiac Med Radiobiol; 2019 Dec; 24():131-149. PubMed ID: 31841463
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The use of mosses as indicators of airborne radionuclides near a major nuclear installation.
    Sumerling TJ
    Sci Total Environ; 1984 May; 35(3):251-65. PubMed ID: 6729442
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Post-Accident Sporadic Releases of Airborne Radionuclides from the Fukushima Daiichi Nuclear Power Plant Site.
    Steinhauser G; Niisoe T; Harada KH; Shozugawa K; Schneider S; Synal HA; Walther C; Christl M; Nanba K; Ishikawa H; Koizumi A
    Environ Sci Technol; 2015 Dec; 49(24):14028-35. PubMed ID: 26448161
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Aerial radiation monitoring around the Fukushima Dai-ichi Nuclear Power Plant using an unmanned helicopter.
    Sanada Y; Torii T
    J Environ Radioact; 2015 Jan; 139():294-299. PubMed ID: 25053518
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Radiocaesium contamination of beef in Croatia after the Chernobyl accident.
    Franić Z; Marović G; Mestrović J
    Food Chem Toxicol; 2008 Jun; 46(6):2096-102. PubMed ID: 18334277
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Radionuclide concentrations in air particulate at Palermo (Italy) following Fukushima accident.
    Rizzo S; Tomarchio E
    Radiat Prot Dosimetry; 2013; 153(4):534-40. PubMed ID: 22847867
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Assessment of dry and wet atmospheric deposits of radioactive aerosols: application to Fukushima radiocaesium fallout.
    Gonze MA; Renaud P; Korsakissok I; Kato H; Hinton TG; Mourlon C; Simon-Cornu M
    Environ Sci Technol; 2014 Oct; 48(19):11268-76. PubMed ID: 25196232
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Investigations of radiocaesium in the natural terrestrial environment in Norway following the Chernobyl accident.
    Bretten S; Gaare E; Skogland T; Steinnes E
    Analyst; 1992 Mar; 117(3):501-3. PubMed ID: 1580389
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Cs-137 air pollution of vegetation in the territory of Bryansk region].
    Makhon'ko KP
    Radiats Biol Radioecol; 1998; 38(1):95-101. PubMed ID: 9606410
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Accumulation of radiocaesium in fungi.
    Bakken LR; Olsen RA
    Can J Microbiol; 1990 Oct; 36(10):704-10. PubMed ID: 2253110
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Transport of the radioisotopes iodine-131, cesium-134, and cesium-137 from the fallout following the accident at the Chernobyl nuclear reactor into cheesemaking products.
    Assimakopoulos PA; Ioannides KG; Pakou AA; Papadopoulou CV
    J Dairy Sci; 1987 Jul; 70(7):1338-43. PubMed ID: 3624589
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Assessing the radiological load on the environment in the middle Danube river basin on the basis of a study of the Kopački Rit Nature Park, Croatia.
    Petrinec B; Sovilj MP; Babić D; Meštrović T; Miklavčić I; Radolić V; Stanić D; Vuković B; Šoštarić M
    Radiat Environ Biophys; 2018 Aug; 57(3):285-292. PubMed ID: 29872921
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Long-term investigations of post-Chernobyl radiocaesium in fallout and air in North Croatia.
    Franić Z; Sega K; Petrinec B; Marović G
    Environ Monit Assess; 2009 Jan; 148(1-4):315-23. PubMed ID: 18278563
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Radiocaesium activities in wheat in Croatia.
    Franić Z; Lokobauer N
    Arh Hig Rada Toksikol; 1994 Jun; 45(2):141-50. PubMed ID: 7980022
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.