These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

130 related articles for article (PubMed ID: 38963164)

  • 21. Formation of CuMn Prussian Blue Analog Double-Shelled Nanoboxes Toward Long-Life Zn-ion Batteries.
    Zeng Y; Xu J; Wang Y; Li S; Luan D; Lou XWD
    Angew Chem Int Ed Engl; 2022 Nov; 61(48):e202212031. PubMed ID: 36177990
    [TBL] [Abstract][Full Text] [Related]  

  • 22. High mass loading and additive-free prussian blue analogue based flexible electrodes for Na-ion supercapacitors.
    Jiang K; Gao M; Dou Z; Wang K; Yu H; Ning L; Yang Y; Lv R; Fu M
    J Colloid Interface Sci; 2023 Nov; 650(Pt A):490-497. PubMed ID: 37421751
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Research Progress of Prussian Blue and Its Analogs as High-Performance Cathode Nanomaterials for Sodium-Ion Batteries.
    Yuan T; Chen Y; Gao X; Xu R; Zhang Z; Chen X; Cui L
    Small Methods; 2023 Dec; ():e2301372. PubMed ID: 38098164
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Monoclinic Bimetallic Prussian Blue Analog Cathode with High Capacity and Long Life for Advanced Sodium Storage.
    Shen L; Jiang Y; Jiang Y; Ma J; Yang K; Ma H; Liu Q; Zhu N
    ACS Appl Mater Interfaces; 2022 Jun; 14(21):24332-24340. PubMed ID: 35604045
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Prussian Blue Analogs and Their Derived Nanomaterials for Electrochemical Energy Storage and Electrocatalysis.
    Song X; Song S; Wang D; Zhang H
    Small Methods; 2021 Apr; 5(4):e2001000. PubMed ID: 34927855
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Unlocking the Potential of Amorphous Prussian Blue with Highly Active Mn Sites at Room Temperature for Impressive Oxygen Evolution Reaction and Super Capacitor Electrochemical Performance.
    Wei L; Meng D; Mao S; Wu X; Huang H; Jiang Q; Tang J
    Small; 2024 Feb; 20(7):e2303946. PubMed ID: 37806767
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Structure evolution from Prussian-blue nanocubes to hollow nanocage composites via sodium tungstate etching.
    Hu X; Wang X; Hu X; Xie C; Zeng D
    Chem Commun (Camb); 2019 Nov; 55(89):13386-13389. PubMed ID: 31633713
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Hierarchically Assembling CoFe Prussian Blue Analogue Nanocubes on CoP Nanosheets as Highly Efficient Electrocatalysts for Overall Water Splitting.
    Quan L; Li S; Zhao Z; Liu J; Ran Y; Cui J; Lin W; Yu X; Wang L; Zhang Y; Ye J
    Small Methods; 2021 Jul; 5(7):e2100125. PubMed ID: 34927988
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Tunable Hollow Bimetallic MnFe Prussian Blue Analogue as the Targeted pH-Responsive Delivery System for Anticancer Drugs.
    Jia Q; Su F; Li Z; Huang X; He L; Wang M; Zhang Z; Fang S; Zhou N
    ACS Appl Bio Mater; 2019 May; 2(5):2143-2154. PubMed ID: 35030653
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Switchable self-assembly of Prussian blue analogs nano-tiles triggered by salt stimulus.
    Dedovets D; Bauduin P; Causse J; Girard L; Diat O
    Phys Chem Chem Phys; 2016 Jan; 18(4):3188-96. PubMed ID: 26743449
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Ruthenium Incorporated Cobalt Phosphide Nanocubes Derived From a Prussian Blue Analog for Enhanced Hydrogen Evolution.
    Yan Y; Huang J; Wang X; Gao T; Zhang Y; Yao T; Song B
    Front Chem; 2018; 6():521. PubMed ID: 30425981
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Bicarbonate-enhanced iron-based Prussian blue analogs catalyze the Fenton-like degradation of p-nitrophenol.
    Yang Y; Gu Y; Lin H; Jie B; Zheng Z; Zhang X
    J Colloid Interface Sci; 2022 Feb; 608(Pt 3):2884-2895. PubMed ID: 34802757
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Modular Construction of Prussian Blue Analog and TiO
    Shi C; Ye S; Wang X; Meng F; Liu J; Yang T; Zhang W; Wei J; Ta N; Lu GQM; Hu M; Liu J
    Adv Sci (Weinh); 2021 Apr; 8(7):2001987. PubMed ID: 33854873
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Core-shell shaped Ni
    Wu S; Feng Q; Zhou S; Zhao H; Xu X; Su Q; Wang Y; Sun Y; Yang Q
    Nanotechnology; 2021 Aug; 32(44):. PubMed ID: 34311450
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Heterostructured Core-Shell Ni-Co@Fe-Co Nanoboxes of Prussian Blue Analogues for Efficient Electrocatalytic Hydrogen Evolution from Alkaline Seawater.
    Zhang H; Diao J; Ouyang M; Yadegari H; Mao M; Wang M; Henkelman G; Xie F; Riley DJ
    ACS Catal; 2023 Jan; 13(2):1349-1358. PubMed ID: 36714053
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Formation of Carbon-Incorporated NiO@Co
    Zhao L; Zhang H; Ma B
    ACS Omega; 2023 Mar; 8(11):10503-10511. PubMed ID: 36969468
    [TBL] [Abstract][Full Text] [Related]  

  • 37. High-Entropy Prussian Blue Analogues and Their Oxide Family as Sulfur Hosts for Lithium-Sulfur Batteries.
    Du M; Geng P; Pei C; Jiang X; Shan Y; Hu W; Ni L; Pang H
    Angew Chem Int Ed Engl; 2022 Oct; 61(41):e202209350. PubMed ID: 36006780
    [TBL] [Abstract][Full Text] [Related]  

  • 38. How to Build Prussian Blue Based Water Oxidation Catalytic Assemblies: Common Trends and Strategies.
    Ulusoy Ghobadi TG; Ozbay E; Karadas F
    Chemistry; 2021 Feb; 27(11):3638-3649. PubMed ID: 33197292
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Prussian Blue Analogues for Sodium-Ion Batteries: Past, Present, and Future.
    Peng J; Zhang W; Liu Q; Wang J; Chou S; Liu H; Dou S
    Adv Mater; 2022 Apr; 34(15):e2108384. PubMed ID: 34918850
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Enabling efficient ample-level oxygen evolution on nickel-iron Prussian blue analogue/hydroxide via hierarchical mass transfer channel construction.
    Sun S; Guo Y; Xu G; Li J; Cai W
    J Colloid Interface Sci; 2024 Apr; 659():40-47. PubMed ID: 38157725
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.