These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

126 related articles for article (PubMed ID: 38963298)

  • 1. Artificial Intelligence and High-Throughput Computational Workflows Empowering the Fast Screening of Metal-Organic Frameworks for Hydrogen Storage.
    Wang L; Feng S; Zhang C; Zhang X; Liu X; Gao H; Liu Z; Li R; Wang J; Jin X
    ACS Appl Mater Interfaces; 2024 Jul; 16(28):36444-36452. PubMed ID: 38963298
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Studies on metal-organic frameworks of Cu(II) with isophthalate linkers for hydrogen storage.
    Yan Y; Yang S; Blake AJ; Schröder M
    Acc Chem Res; 2014 Feb; 47(2):296-307. PubMed ID: 24168725
    [TBL] [Abstract][Full Text] [Related]  

  • 3. High-throughput computational screening of hypothetical metal-organic frameworks with open copper sites for CO
    Li M; Cai W; Wang C; Wu X
    Phys Chem Chem Phys; 2022 Aug; 24(31):18764-18776. PubMed ID: 35903942
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Computational Screening of Metal-Organic Frameworks for Ammonia Capture from H
    Zhu Z; Wang H; Wu XY; Luo K; Fan J
    ACS Omega; 2022 Oct; 7(42):37640-37653. PubMed ID: 36312414
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Data Driven Discovery of MOFs for Hydrogen Gas Adsorption.
    Singh SK; Sose AT; Wang F; Bejagam KK; Deshmukh SA
    J Chem Theory Comput; 2023 Oct; 19(19):6686-6703. PubMed ID: 37756641
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Accelerating Discovery of Metal-Organic Frameworks for Methane Adsorption with Hierarchical Screening and Deep Learning.
    Wang R; Zhong Y; Bi L; Yang M; Xu D
    ACS Appl Mater Interfaces; 2020 Nov; 12(47):52797-52807. PubMed ID: 33175490
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Do New MOFs Perform Better for CO
    Avci G; Erucar I; Keskin S
    ACS Appl Mater Interfaces; 2020 Sep; 12(37):41567-41579. PubMed ID: 32818375
    [TBL] [Abstract][Full Text] [Related]  

  • 8. MOFGalaxyNet: a social network analysis for predicting guest accessibility in metal-organic frameworks utilizing graph convolutional networks.
    Jalali M; Wonanke ADD; Wöll C
    J Cheminform; 2023 Oct; 15(1):94. PubMed ID: 37821998
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Geometrical Properties Can Predict CO2 and N2 Adsorption Performance of Metal-Organic Frameworks (MOFs) at Low Pressure.
    Fernandez M; Barnard AS
    ACS Comb Sci; 2016 May; 18(5):243-52. PubMed ID: 27022760
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Understanding Volumetric and Gravimetric Hydrogen Adsorption Trade-off in Metal-Organic Frameworks.
    Gómez-Gualdrón DA; Wang TC; García-Holley P; Sawelewa RM; Argueta E; Snurr RQ; Hupp JT; Yildirim T; Farha OK
    ACS Appl Mater Interfaces; 2017 Oct; 9(39):33419-33428. PubMed ID: 28387498
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Transition-Metal Interlink Neural Network: Machine Learning of 2D Metal-Organic Frameworks with High Magnetic Anisotropy.
    Wang P; Xing J; Jiang X; Zhao J
    ACS Appl Mater Interfaces; 2022 Jul; ():. PubMed ID: 35830170
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Machine learning potential for modelling H
    Liu S; Dupuis R; Fan D; Benzaria S; Bonneau M; Bhatt P; Eddaoudi M; Maurin G
    Chem Sci; 2024 Apr; 15(14):5294-5302. PubMed ID: 38577379
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effect of Metal-Organic Framework (MOF) Database Selection on the Assessment of Gas Storage and Separation Potentials of MOFs.
    Daglar H; Gulbalkan HC; Avci G; Aksu GO; Altundal OF; Altintas C; Erucar I; Keskin S
    Angew Chem Int Ed Engl; 2021 Mar; 60(14):7828-7837. PubMed ID: 33443312
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Identifying promising metal-organic frameworks for heterogeneous catalysis via high-throughput periodic density functional theory.
    Rosen AS; Notestein JM; Snurr RQ
    J Comput Chem; 2019 May; 40(12):1305-1318. PubMed ID: 30715733
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Exploring Hydrogen Storage Capacity in Metal-Organic Frameworks: A Bayesian Optimization Approach.
    Ghude S; Chowdhury C
    Chemistry; 2023 Dec; 29(69):e202301840. PubMed ID: 37638413
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Air-Stable Cu(I) Metal-Organic Framework for Hydrogen Storage.
    Sengupta D; Melix P; Bose S; Duncan J; Wang X; Mian MR; Kirlikovali KO; Joodaki F; Islamoglu T; Yildirim T; Snurr RQ; Farha OK
    J Am Chem Soc; 2023 Sep; 145(37):20492-20502. PubMed ID: 37672758
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Metal-Organic Frameworks (MOFs) As Hydrogen Storage Materials At Near-Ambient Temperature.
    Sutton AL; Mardel JI; Hill MR
    Chemistry; 2024 Jun; ():e202400717. PubMed ID: 38825571
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Understanding hydrogen adsorption in metal-organic frameworks with open metal sites: a computational study.
    Yang Q; Zhong C
    J Phys Chem B; 2006 Jan; 110(2):655-8. PubMed ID: 16471581
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Optimization of the Pore Structures of MOFs for Record High Hydrogen Volumetric Working Capacity.
    Zhang X; Lin RB; Wang J; Wang B; Liang B; Yildirim T; Zhang J; Zhou W; Chen B
    Adv Mater; 2020 Apr; 32(17):e1907995. PubMed ID: 32187764
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Diversifying Databases of Metal Organic Frameworks for High-Throughput Computational Screening.
    Majumdar S; Moosavi SM; Jablonka KM; Ongari D; Smit B
    ACS Appl Mater Interfaces; 2021 Dec; 13(51):61004-61014. PubMed ID: 34910455
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.