These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

127 related articles for article (PubMed ID: 3896331)

  • 1. Base-pairing properties of O-methylated bases of nucleic acids. Energetic and steric considerations.
    Pohorille A; Loew GH
    Biophys Chem; 1985 Jun; 22(1-2):37-51. PubMed ID: 3896331
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Hydration and stability of nucleic acid bases and base pairs.
    Kabelác M; Hobza P
    Phys Chem Chem Phys; 2007 Feb; 9(8):903-17. PubMed ID: 17301881
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Recognition of nucleic acid bases and base-pairs by hydrogen bonding to amino acid side-chains.
    Cheng AC; Chen WW; Fuhrmann CN; Frankel AD
    J Mol Biol; 2003 Apr; 327(4):781-96. PubMed ID: 12654263
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Simulation of interactions between nucleic acid bases by refined atom-atom potential functions.
    Poltev VI; Shulyupina NV
    J Biomol Struct Dyn; 1986 Feb; 3(4):739-65. PubMed ID: 3271047
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Correlation of crystallographically determined and computationally predicted hydrogen-bonded pairing configurations of nucleic acid bases.
    Ornstein RL; Fresco JR
    Proc Natl Acad Sci U S A; 1983 Sep; 80(17):5171-5. PubMed ID: 6577415
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Structural diversity and isomorphism of hydrogen-bonded base interactions in nucleic acids.
    Walberer BJ; Cheng AC; Frankel AD
    J Mol Biol; 2003 Apr; 327(4):767-80. PubMed ID: 12654262
    [TBL] [Abstract][Full Text] [Related]  

  • 7. High-throughput single-molecule quantification of individual base stacking energies in nucleic acids.
    Abraham Punnoose J; Thomas KJ; Chandrasekaran AR; Vilcapoma J; Hayden A; Kilpatrick K; Vangaveti S; Chen A; Banco T; Halvorsen K
    Nat Commun; 2023 Feb; 14(1):631. PubMed ID: 36746949
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Quantum-mechanical analysis of the energetic contributions to π stacking in nucleic acids versus rise, twist, and slide.
    Parker TM; Hohenstein EG; Parrish RM; Hud NV; Sherrill CD
    J Am Chem Soc; 2013 Jan; 135(4):1306-16. PubMed ID: 23265256
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Beyond nucleic acid base pairs: from triads to heptads.
    Sühnel J
    Biopolymers; 2001-2002; 61(1):32-51. PubMed ID: 11891627
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Theoretical calculations of base-base interactions in nucleic acids: II. Stacking interactions in polynucleotides.
    Gupta G; Sasisekharan V
    Nucleic Acids Res; 1978 May; 5(5):1655-73. PubMed ID: 662698
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Theoretical studies on protein-nucleic acid interactions. III. Stacking of aromatic amino acids with bases and base pairs of nucleic acids.
    Kumar NV; Govil G
    Biopolymers; 1984 Oct; 23(10):2009-24. PubMed ID: 6498291
    [No Abstract]   [Full Text] [Related]  

  • 12. A role of elementary interactions between nucleic-acid base and amino-acid side chains in specificity of ribonuclease.
    Takenaka A; Shibata M; Takimoto M; Sasada Y
    Nucleic Acids Symp Ser; 1984; (15):113-6. PubMed ID: 6522281
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A theoretical study oh the effect of "bound" water on the proton chemical shifts of the nucleic acid bases.
    Giessner-Prettre C; Prado FR; Pullman B
    Nucleic Acids Res; 1977 Sep; 4(9):3229-38. PubMed ID: 909804
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Theoretical studies on protein-nucleic acid interactions. II. Hydrogen bonding of amino acid side chains with bases and base pairs of nucleic acids.
    Kumar NV; Govil G
    Biopolymers; 1984 Oct; 23(10):1995-2008. PubMed ID: 6498290
    [No Abstract]   [Full Text] [Related]  

  • 15. Parallel-stranded duplex DNA containing blocks of trans purine-purine and purine-pyrimidine base pairs.
    Evertsz EM; Rippe K; Jovin TM
    Nucleic Acids Res; 1994 Aug; 22(16):3293-303. PubMed ID: 8078763
    [TBL] [Abstract][Full Text] [Related]  

  • 16. 15-mer DNA duplexes containing an abasic site are thermodynamically more stable with adjacent purines than with pyrimidines.
    Sági J; Guliaev AB; Singer B
    Biochemistry; 2001 Apr; 40(13):3859-68. PubMed ID: 11300765
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Theoretical ab initio study of the effects of methylation on structure and stability of G:C Watson-Crick base pair.
    Forde G; Flood A; Salter L; Hill G; Gorb L; Leszczynski J
    J Biomol Struct Dyn; 2003 Jun; 20(6):811-7. PubMed ID: 12744710
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Theoretical study on the proton chemical shifts of hydrogen bonded nucleic acid bases.
    Giessner-Prettre C; Pullman B; Caillet J
    Nucleic Acids Res; 1977 Jan; 4(1):99-116. PubMed ID: 866180
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Theoretical calculations of base-base interactions in nucleic acids: I. Stacking interactions in free bases.
    Gupta G; Sasisekharan V
    Nucleic Acids Res; 1978 May; 5(5):1639-53. PubMed ID: 662697
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Base-stacking and base-pairing contributions to helix stability: thermodynamics of double-helix formation with CCGG, CCGGp, CCGGAp, ACCGGp, CCGGUp, and ACCGGUp.
    Petersheim M; Turner DH
    Biochemistry; 1983 Jan; 22(2):256-63. PubMed ID: 6824629
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.