These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
126 related articles for article (PubMed ID: 38963322)
1. Evaluation of plant-derived biomaterials for the development of tissue-engineered corneal substitutes. Badawy HAE; Osman A; Ahmed TAE; Hincke MT J Biomed Mater Res A; 2024 Dec; 112(12):2187-2201. PubMed ID: 38963322 [TBL] [Abstract][Full Text] [Related]
2. Cytocompatibility and Suitability of Protein-Based Biomaterials as Potential Candidates for Corneal Tissue Engineering. Romo-Valera C; Guerrero P; Arluzea J; Etxebarria J; de la Caba K; Andollo N Int J Mol Sci; 2021 Mar; 22(7):. PubMed ID: 33807473 [TBL] [Abstract][Full Text] [Related]
3. Collagen based film with well epithelial and stromal regeneration as corneal repair materials: Improving mechanical property by crosslinking with citric acid. Zhao X; Liu Y; Li W; Long K; Wang L; Liu S; Wang Y; Ren L Mater Sci Eng C Mater Biol Appl; 2015 Oct; 55():201-8. PubMed ID: 26117756 [TBL] [Abstract][Full Text] [Related]
4. Integrated 3D bioprinting-based geometry-control strategy for fabricating corneal substitutes. Zhang B; Xue Q; Hu HY; Yu MF; Gao L; Luo YC; Li Y; Li JT; Ma L; Yao YF; Yang HY J Zhejiang Univ Sci B; 2019 Dec.; 20(12):945-959. PubMed ID: 31749342 [TBL] [Abstract][Full Text] [Related]
5. In vitro characterization of electrochemically compacted collagen matrices for corneal applications. Kishore V; Iyer R; Frandsen A; Nguyen TU Biomed Mater; 2016 Oct; 11(5):055008. PubMed ID: 27710923 [TBL] [Abstract][Full Text] [Related]
6. Epichlorohydrin-Cross-linked Hydroxyethyl Cellulose/Soy Protein Isolate Composite Films as Biocompatible and Biodegradable Implants for Tissue Engineering. Zhao Y; He M; Zhao L; Wang S; Li Y; Gan L; Li M; Xu L; Chang PR; Anderson DP; Chen Y ACS Appl Mater Interfaces; 2016 Feb; 8(4):2781-95. PubMed ID: 26741400 [TBL] [Abstract][Full Text] [Related]
7. Crosslinked collagen hydrogels as corneal implants: effects of sterically bulky vs. non-bulky carbodiimides as crosslinkers. Ahn JI; Kuffova L; Merrett K; Mitra D; Forrester JV; Li F; Griffith M Acta Biomater; 2013 Aug; 9(8):7796-805. PubMed ID: 23619290 [TBL] [Abstract][Full Text] [Related]
8. A simple, cross-linked collagen tissue substitute for corneal implantation. Liu Y; Gan L; Carlsson DJ; Fagerholm P; Lagali N; Watsky MA; Munger R; Hodge WG; Priest D; Griffith M Invest Ophthalmol Vis Sci; 2006 May; 47(5):1869-75. PubMed ID: 16638993 [TBL] [Abstract][Full Text] [Related]
9. Development of a rabbit corneal equivalent using an acellular corneal matrix of a porcine substrate. Xu YG; Xu YS; Huang C; Feng Y; Li Y; Wang W Mol Vis; 2008; 14():2180-9. PubMed ID: 19052652 [TBL] [Abstract][Full Text] [Related]
10. Dendrimer crosslinked collagen as a corneal tissue engineering scaffold: mechanical properties and corneal epithelial cell interactions. Duan X; Sheardown H Biomaterials; 2006 Sep; 27(26):4608-17. PubMed ID: 16713624 [TBL] [Abstract][Full Text] [Related]
12. Horseradish Peroxidase-Catalyzed Crosslinking of Fibrin Microthread Scaffolds. Carnes ME; Gonyea CR; Mooney RG; Njihia JW; Coburn JM; Pins GD Tissue Eng Part C Methods; 2020 Jun; 26(6):317-331. PubMed ID: 32364015 [TBL] [Abstract][Full Text] [Related]
13. Tissue-engineered recombinant human collagen-based corneal substitutes for implantation: performance of type I versus type III collagen. Merrett K; Fagerholm P; McLaughlin CR; Dravida S; Lagali N; Shinozaki N; Watsky MA; Munger R; Kato Y; Li F; Marmo CJ; Griffith M Invest Ophthalmol Vis Sci; 2008 Sep; 49(9):3887-94. PubMed ID: 18515574 [TBL] [Abstract][Full Text] [Related]
14. Recombinant human collagen for tissue engineered corneal substitutes. Liu W; Merrett K; Griffith M; Fagerholm P; Dravida S; Heyne B; Scaiano JC; Watsky MA; Shinozaki N; Lagali N; Munger R; Li F Biomaterials; 2008 Mar; 29(9):1147-58. PubMed ID: 18076983 [TBL] [Abstract][Full Text] [Related]
15. PEG-stabilized carbodiimide crosslinked collagen-chitosan hydrogels for corneal tissue engineering. Rafat M; Li F; Fagerholm P; Lagali NS; Watsky MA; Munger R; Matsuura T; Griffith M Biomaterials; 2008 Oct; 29(29):3960-72. PubMed ID: 18639928 [TBL] [Abstract][Full Text] [Related]
16. Natural Biomaterials for Corneal Tissue Engineering, Repair, and Regeneration. Palchesko RN; Carrasquilla SD; Feinberg AW Adv Healthc Mater; 2018 Aug; 7(16):e1701434. PubMed ID: 29845780 [TBL] [Abstract][Full Text] [Related]
17. Construction of tissue-engineered full-thickness cornea substitute using limbal epithelial cell-like and corneal endothelial cell-like cells derived from human embryonic stem cells. Zhang C; Du L; Sun P; Shen L; Zhu J; Pang K; Wu X Biomaterials; 2017 Apr; 124():180-194. PubMed ID: 28199886 [TBL] [Abstract][Full Text] [Related]
18. Sequentially-crosslinked bioactive hydrogels as nano-patterned substrates with customizable stiffness and degradation for corneal tissue engineering applications. Rizwan M; Peh GSL; Ang HP; Lwin NC; Adnan K; Mehta JS; Tan WS; Yim EKF Biomaterials; 2017 Mar; 120():139-154. PubMed ID: 28061402 [TBL] [Abstract][Full Text] [Related]
19. Biodegradable and biocompatible poly(ethylene glycol)-based hydrogel films for the regeneration of corneal endothelium. Ozcelik B; Brown KD; Blencowe A; Ladewig K; Stevens GW; Scheerlinck JP; Abberton K; Daniell M; Qiao GG Adv Healthc Mater; 2014 Sep; 3(9):1496-507. PubMed ID: 24652807 [TBL] [Abstract][Full Text] [Related]
20. Development and characterization of a full-thickness acellular porcine cornea matrix for tissue engineering. Du L; Wu X Artif Organs; 2011 Jul; 35(7):691-705. PubMed ID: 21501189 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]