These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

115 related articles for article (PubMed ID: 38963927)

  • 1. Emergent inequity of glycaemic metrics for Māori children with type 1 diabetes is negated by early use of continuous glucose monitoring.
    Stedman L; Williman J; Burnside M; Davies H; Jefferies C; Marsters B; Paul R; Wheeler B; Wiltshire E; de Bock M
    N Z Med J; 2024 Jul; 137(1598):14-21. PubMed ID: 38963927
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Inequity in access to continuous glucose monitoring and health outcomes in paediatric diabetes, a case for national continuous glucose monitoring funding: A cross-sectional population study of children with type 1 diabetes in New Zealand.
    Burnside MJ; Williman JA; Davies HM; Jefferies CA; Paul RG; Wheeler BJ; Wiltshire EJ; Anderson YC; de Bock MI
    Lancet Reg Health West Pac; 2023 Feb; 31():100644. PubMed ID: 36419466
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Real time continuous glucose monitoring in high-risk people with insulin-requiring type 2 diabetes: A randomised controlled trial.
    Lever CS; Williman JA; Boucsein A; Watson A; Sampson RS; Sergel-Stringer OT; Keesing C; Chepulis L; Wheeler BJ; de Bock MI; Paul RG
    Diabet Med; 2024 Aug; 41(8):e15348. PubMed ID: 38758653
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Type 1 diabetes outcomes of children born in Israel of Eritrean asylum seekers.
    Elkon-Tamir E; Lebenthal Y; Laurian I; Dorfman A; Chorna E; Interator H; Israeli G; Rosen G; Eyal O; Oren A; Brener A
    Acta Diabetol; 2021 Feb; 58(2):145-152. PubMed ID: 32915299
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Young people with Type 1 diabetes of non-white ethnicity and lower socio-economic status have poorer glycaemic control in England and Wales.
    Khanolkar AR; Amin R; Taylor-Robinson D; Viner RM; Warner JT; Stephenson T
    Diabet Med; 2016 Nov; 33(11):1508-1515. PubMed ID: 26802317
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Real-world glycaemic outcomes in adult persons with type 1 diabetes using a real-time continuous glucose monitor compared to an intermittently scanned glucose monitor: A retrospective observational study from the Canadian LMC diabetes registry (REAL-CGM-T1D).
    Brown RE; Chu L; Norman GJ; Abitbol A
    Diabet Med; 2022 Nov; 39(11):e14937. PubMed ID: 36065977
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effectiveness of continuous glucose monitoring in maintaining glycaemic control among people with type 1 diabetes mellitus: a systematic review of randomised controlled trials and meta-analysis.
    Teo E; Hassan N; Tam W; Koh S
    Diabetologia; 2022 Apr; 65(4):604-619. PubMed ID: 35141761
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Disparities in Hemoglobin A1c Levels in the First Year After Diagnosis Among Youths With Type 1 Diabetes Offered Continuous Glucose Monitoring.
    Addala A; Ding V; Zaharieva DP; Bishop FK; Adams AS; King AC; Johari R; Scheinker D; Hood KK; Desai M; Maahs DM; Prahalad P;
    JAMA Netw Open; 2023 Apr; 6(4):e238881. PubMed ID: 37074715
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The Association Between HbA
    Seyed Ahmadi S; Westman K; Pivodic A; Ólafsdóttir AF; Dahlqvist S; Hirsch IB; Hellman J; Ekelund M; Heise T; Polonsky W; Wijkman M; Schwarcz E; Lind M
    Diabetes Care; 2020 Sep; 43(9):2017-2024. PubMed ID: 32641374
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Use of intermittently scanned continuous glucose monitoring in young people with high-risk type 1 diabetes-Extension phase outcomes following a 6-month randomized control trial.
    Rose S; Styles SE; Wiltshire EJ; Stanley J; Galland BC; de Bock MI; Tomlinson PA; Rayns JA; MacKenzie KE; Wheeler BJ
    Diabet Med; 2022 May; 39(5):e14756. PubMed ID: 34862661
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Translating glycated hemoglobin A1c into time spent in glucose target range: A multicenter study.
    Petersson J; Åkesson K; Sundberg F; Särnblad S
    Pediatr Diabetes; 2019 May; 20(3):339-344. PubMed ID: 30652407
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Diabetic Ketoacidosis Severity at Diagnosis and Glycaemic Control in the First Year of Childhood Onset Type 1 Diabetes-A Longitudinal Cohort Study.
    Khanolkar AR; Amin R; Taylor-Robinson D; Viner RM; Warner J; Gevers EF; Stephenson T
    Int J Environ Res Public Health; 2017 Dec; 15(1):. PubMed ID: 29295580
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Partial remission in type 1 diabetes and associated factors: Analysis based on the insulin dose-adjusted hemoglobin A1c in children and adolescents from a regional diabetes center, Auckland, New Zealand.
    Chiavaroli V; Derraik JGB; Jalaludin MY; Albert BB; Ramkumar S; Cutfield WS; Hofman PL; Jefferies CA
    Pediatr Diabetes; 2019 Nov; 20(7):892-900. PubMed ID: 31237756
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Continuous subcutaneous insulin infusion versus multiple daily injections in children and young people at diagnosis of type 1 diabetes: the SCIPI RCT.
    Blair J; McKay A; Ridyard C; Thornborough K; Bedson E; Peak M; Didi M; Annan F; Gregory JW; Hughes D; Gamble C
    Health Technol Assess; 2018 Aug; 22(42):1-112. PubMed ID: 30109847
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A register-based study describing time trends in risk factor control and serious hypoglycaemia together with the effects of starting continuous glucose monitoring in people with type 1 diabetes in Norway.
    Sølvik UØ; Cooper JG; Løvaas KF; Ernes T; Madsen TV; Sandberg S; Ueland GÅ
    Diabet Med; 2024 Jul; 41(7):e15335. PubMed ID: 38662602
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A Feasibility Study of Paired Continuous Glucose Monitoring Intrapartum and in the Newborn in Pregnancies Complicated by Type 1 Diabetes.
    Stewart ZA; Thomson L; Murphy HR; Beardsall K
    Diabetes Technol Ther; 2019 Jan; 21(1):20-27. PubMed ID: 30620640
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Continuous glucose monitoring systems for type 1 diabetes mellitus.
    Langendam M; Luijf YM; Hooft L; Devries JH; Mudde AH; Scholten RJ
    Cochrane Database Syst Rev; 2012 Jan; 1(1):CD008101. PubMed ID: 22258980
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Early Initiation of Diabetes Devices Relates to Improved Glycemic Control in Children with Recent-Onset Type 1 Diabetes Mellitus.
    Patton SR; Noser AE; Youngkin EM; Majidi S; Clements MA
    Diabetes Technol Ther; 2019 Jul; 21(7):379-384. PubMed ID: 31166808
    [No Abstract]   [Full Text] [Related]  

  • 19. Comparing the glycaemic outcomes between real-time continuous glucose monitoring (rt-CGM) and intermittently scanned continuous glucose monitoring (isCGM) among adults and children with type 1 diabetes: A systematic review and meta-analysis of randomized controlled trials.
    Zhou Y; Sardana D; Kuroko S; Haszard JJ; de Block MI; Weng J; Jefferies C; Wheeler BJ
    Diabet Med; 2024 Mar; 41(3):e15280. PubMed ID: 38197238
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Use of Factory-Calibrated Real-time Continuous Glucose Monitoring Improves Time in Target and HbA
    Thabit H; Prabhu JN; Mubita W; Fullwood C; Azmi S; Urwin A; Doughty I; Leelarathna L
    Diabetes Care; 2020 Oct; 43(10):2537-2543. PubMed ID: 32723843
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.