These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

103 related articles for article (PubMed ID: 38963959)

  • 1. Catalytic methane decomposition on CNT-supported Fe-catalysts.
    Yang M; Baeyens J; Li S; Li Z; Zhang H
    J Environ Manage; 2024 Jul; 365():121592. PubMed ID: 38963959
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Hydrogen Production via Methane Decomposition over Alumina Doped with Titanium Oxide-Supported Iron Catalyst for Various Calcination Temperatures.
    Ahmed H; Alotibi MF; Fakeeha AH; Ibrahim AA; Abasaeed AE; Osman AI; Al-Awadi AS; Alarifi N; Al-Fatesh AS
    ChemistryOpen; 2024 Apr; 13(4):e202300173. PubMed ID: 38085118
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effect of Fe-loading in iron-based catalysts for the CH
    Yang M; Li S; Deng Y; Baeyens J; Zhang H
    J Environ Manage; 2023 Nov; 346():118999. PubMed ID: 37751646
    [TBL] [Abstract][Full Text] [Related]  

  • 4. An investigation on the relationship between physicochemical characteristics of alumina-supported cobalt catalyst and its performance in dry reforming of methane.
    Khairudin NF; Mohammadi M; Mohamed AR
    Environ Sci Pollut Res Int; 2021 Jun; 28(23):29157-29176. PubMed ID: 33550559
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Methane-induced Activation Mechanism of Fused Ferric Oxide-Alumina Catalysts during Methane Decomposition.
    Reddy Enakonda L; Zhou L; Saih Y; Ould-Chikh S; Lopatin S; Gary D; Del-Gallo P; Basset JM
    ChemSusChem; 2016 Aug; 9(15):1911-5. PubMed ID: 27345621
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Ni nanoparticles supported on Al
    Bian H; Gani TZH; Liu J; Hondo E; Lim KH; Zhang T; Li D; Liu SF; Yan J; Kawi S
    J Colloid Interface Sci; 2023 Aug; 643():151-161. PubMed ID: 37058890
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Comparing Ultralong Carbon Nanotube Growth from Methane over Mono- and Bi-Metallic Iron Chloride Catalysts.
    Yick T; Gangoli VS; Orbaek White A
    Nanomaterials (Basel); 2023 Jul; 13(15):. PubMed ID: 37570489
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Valorization of Char From Biomass Gasification as Catalyst Support in Dry Reforming of Methane.
    Benedetti V; Ail SS; Patuzzi F; Baratieri M
    Front Chem; 2019; 7():119. PubMed ID: 30918890
    [TBL] [Abstract][Full Text] [Related]  

  • 9. CO
    Afandi NS; Mohammadi M; Ichikawa S; Mohamed AR
    Environ Sci Pollut Res Int; 2020 Dec; 27(34):43011-43027. PubMed ID: 32725565
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Development of high-performance nickel-based catalysts for production of hydrogen and carbon nanotubes from biogas.
    Saconsint S; Sae-Tang N; Srifa A; Koo-Amornpattana W; Assabumrungrat S; Fukuhara C; Ratchahat S
    Sci Rep; 2022 Sep; 12(1):15195. PubMed ID: 36071147
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Hydrogen Production by Three-Stage (i) Pyrolysis, (ii) Catalytic Steam Reforming, and (iii) Water Gas Shift Processing of Waste Plastic.
    Alshareef R; Nahil MA; Williams PT
    Energy Fuels; 2023 Mar; 37(5):3894-3907. PubMed ID: 36897817
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Methane Decomposition to Hydrogen Over Zirconia-Supported Fe Catalysts-Effects of the Modified Support.
    Bayazed M; Fakeeha AH; Ibrahim AA; Alanazi YM; Abasaeed AE; Khan WU; Abu-Dahrieh JK; Al-Fatesh AS
    ChemistryOpen; 2023 Sep; 12(9):e202300112. PubMed ID: 37688328
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Ni-Co bimetallic catalysts on coconut shell activated carbon prepared using solid-phase method for highly efficient dry reforming of methane.
    Li L; Chen J; Zhang Y; Sun J; Zou G
    Environ Sci Pollut Res Int; 2022 May; 29(25):37685-37699. PubMed ID: 35066826
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Carbon Deposition Onto Ni-Based Catalysts for Combined Steam/CO2 Reforming of Methane.
    Li P; Park YH; Moon DJ; Park NC; Kim YC
    J Nanosci Nanotechnol; 2016 Feb; 16(2):1562-6. PubMed ID: 27433622
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Synergistic Effects of In-Situ Exsolved Ni-Ru Bimetallic Catalyst on High-Performance and Durable Direct-Methane Solid Oxide Fuel Cells.
    Liu F; Deng H; Wang Z; Hussain AM; Dale N; Furuya Y; Miura Y; Fukuyama Y; Ding H; Liu B; Duan C
    J Am Chem Soc; 2024 Feb; 146(7):4704-4715. PubMed ID: 38277126
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Temperature programmed CVD: a novel technique to investigate carbon nanotube synthesis on FeMo/MgO catalysts.
    Teixeira AP; Lemos BR; Magalhães LA; Ardisson JD; Lago RM; Furtado CA; Santos AP
    J Nanosci Nanotechnol; 2012 Mar; 12(3):2661-7. PubMed ID: 22755105
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Investigating the stability of Ni and Fe nanoparticle distribution and the MWCNT structure in the dry reforming of methane.
    Kozonoe CE; Santos VM; Schmal M
    Environ Sci Pollut Res Int; 2023 Nov; 30(51):111382-111396. PubMed ID: 37816958
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Influence of Nature Support on Methane and CO
    Fakeeha AH; Kasim SO; Ibrahim AA; Abasaeed AE; Al-Fatesh AS
    Materials (Basel); 2019 May; 12(11):. PubMed ID: 31159285
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effect of Support on Stability and Coke Resistance of Ni-Based Catalyst in Combined Steam and CO
    Hong Phuong P; Cam Anh H; Tri N; Phung Anh N; Cam Loc L
    ACS Omega; 2022 Jun; 7(23):20092-20103. PubMed ID: 35721961
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Growth of few-wall carbon nanotubes with narrow diameter distribution over Fe-Mo-MgO catalyst by methane/acetylene catalytic decomposition.
    Labunov VA; Basaev AS; Shulitski BG; Shaman YP; Komissarov I; Prudnikava AL; Tay BK; Shakerzadeh M
    Nanoscale Res Lett; 2012 Feb; 7(1):102. PubMed ID: 22300375
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.