BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

104 related articles for article (PubMed ID: 38963977)

  • 1. One-step fabrication of a self-driven point-of-care chip by femtosecond laser direct writing and its application in cancer cell H
    Wang Y; Lai B; Yu Z; Xu Z
    Talanta; 2024 Jun; 278():126483. PubMed ID: 38963977
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A self-driven microfluidic surface-enhanced Raman scattering device for Hg
    Li X; Yuan G; Yu W; Xing J; Zou Y; Zhao C; Kong W; Yu Z; Guo C
    Lab Chip; 2020 Jan; 20(2):414-423. PubMed ID: 31867593
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Attomolar Sensing Based on Liquid Interface-Assisted Surface-Enhanced Raman Scattering in Microfluidic Chip by Femtosecond Laser Processing.
    Bai S; Serien D; Ma Y; Obata K; Sugioka K
    ACS Appl Mater Interfaces; 2020 Sep; 12(37):42328-42338. PubMed ID: 32799517
    [TBL] [Abstract][Full Text] [Related]  

  • 4. [Applications of microfluidic paper-based chips in environmental analysis and detection].
    Zhang Y; Qi J; Liu F; Wang N; Sun X; Cui R; Yu J; Ye J; Liu P; Li B; Chen L
    Se Pu; 2021 Aug; 39(8):802-815. PubMed ID: 34212581
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Recent progress of microfluidic chips in immunoassay.
    Wu K; He X; Wang J; Pan T; He R; Kong F; Cao Z; Ju F; Huang Z; Nie L
    Front Bioeng Biotechnol; 2022; 10():1112327. PubMed ID: 36619380
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Preparation of a Superhydrophobic and Peroxidase-like Activity Array Chip for H2O2 Sensing by Surface-Enhanced Raman Scattering.
    Yu Z; Park Y; Chen L; Zhao B; Jung YM; Cong Q
    ACS Appl Mater Interfaces; 2015 Oct; 7(42):23472-80. PubMed ID: 26437325
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [Surface-enhanced Raman detection of deoxynivalenol allenol in agricultural products].
    Chen M; Su B; Huang J; Fu F; Dong Y
    Se Pu; 2022 Nov; 40(11):1039-1046. PubMed ID: 36351813
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Pump-free microfluidic chip based laryngeal squamous cell carcinoma-related microRNAs detection through the combination of surface-enhanced Raman scattering techniques and catalytic hairpin assembly amplification.
    Ge S; Li G; Zhou X; Mao Y; Gu Y; Li Z; Gu Y; Cao X
    Talanta; 2022 Aug; 245():123478. PubMed ID: 35436733
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Horseradish peroxidase-repeat assay based on tyramine signal amplification for highly sensitive H
    Fu C; Wang Y; Tian X; Wu Y; Cao H; Li Y; Jung YM
    Analyst; 2021 Nov; 146(23):7320-7326. PubMed ID: 34762076
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A microfluidic device enabling surface-enhanced Raman spectroscopy at chip-integrated multifunctional nanoporous membranes.
    Krafft B; Panneerselvam R; Geissler D; Belder D
    Anal Bioanal Chem; 2020 Jan; 412(2):267-277. PubMed ID: 31797018
    [TBL] [Abstract][Full Text] [Related]  

  • 11. In Situ Microfluidic SERS Chip for Ultrasensitive Hg
    Zhang H; Wang D; Zhang D; Zhang T; Yang L; Li Z
    ACS Appl Mater Interfaces; 2022 Jan; 14(1):2211-2218. PubMed ID: 34964597
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Surface-Enhanced Raman Scattering Based on Sb
    Tian X; Zhang B; Li Y; Yang J; Sun L; Pei H; Cao Q; Lin Q
    ACS Appl Mater Interfaces; 2024 Mar; 16(12):15640-15648. PubMed ID: 38488314
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Rational design of wettability-patterned microchips for high-performance attomolar surface-enhanced Raman detection.
    Shi XS; Zhao YF; Zhang HY; Xu XF
    Talanta; 2023 Jun; 258():124417. PubMed ID: 36931060
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Simultaneous and highly sensitive detection of multiple breast cancer biomarkers in real samples using a SERS microfluidic chip.
    Zheng Z; Wu L; Li L; Zong S; Wang Z; Cui Y
    Talanta; 2018 Oct; 188():507-515. PubMed ID: 30029406
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Capillary-driven surface-enhanced Raman scattering (SERS)-based microfluidic chip for abrin detection.
    Yang H; Deng M; Ga S; Chen S; Kang L; Wang J; Xin W; Zhang T; You Z; An Y; Wang J; Cui D
    Nanoscale Res Lett; 2014 Mar; 9(1):138. PubMed ID: 24655483
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Femtosecond laser hybrid fabrication of a 3D microfluidic chip for PCR application.
    Shan C; Zhang C; Liang J; Yang Q; Bian H; Yong J; Hou X; Chen F
    Opt Express; 2020 Aug; 28(18):25716-25722. PubMed ID: 32906856
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Semiconductor-driven "turn-off" surface-enhanced Raman scattering spectroscopy: application in selective determination of chromium(vi) in water.
    Ji W; Wang Y; Tanabe I; Han X; Zhao B; Ozaki Y
    Chem Sci; 2015 Jan; 6(1):342-348. PubMed ID: 28694937
    [TBL] [Abstract][Full Text] [Related]  

  • 18. SERS microfluidic chip integrated with double amplified signal off-on strategy for detection of microRNA in NSCLC.
    Zhu J; Luo J; Hua Z; Feng X; Cao X
    Biomed Opt Express; 2024 Feb; 15(2):594-607. PubMed ID: 38404336
    [TBL] [Abstract][Full Text] [Related]  

  • 19.
    Dogan Ü; Sucularlı F; Yildirim E; Cetin D; Suludere Z; Boyaci IH; Tamer U
    Biosensors (Basel); 2022 Sep; 12(9):. PubMed ID: 36140150
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Design and preparation of centrifugal microfluidic chip integrated with SERS detection for rapid diagnostics.
    Su X; Xu Y; Zhao H; Li S; Chen L
    Talanta; 2019 Mar; 194():903-909. PubMed ID: 30609623
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.