These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

122 related articles for article (PubMed ID: 38963977)

  • 41. Monodispersed silver-gold nanorods controllable etching for ultrasensitive SERS detection of hydrogen peroxide-involved metabolites.
    Zhang R; Zhong Q; Liu Y; Ji J; Liu B
    Talanta; 2022 Jun; 243():123382. PubMed ID: 35303552
    [TBL] [Abstract][Full Text] [Related]  

  • 42. A dual-signal amplification strategy based on pump-free SERS microfluidic chip for rapid and ultrasensitive detection of non-small cell lung cancer-related circulating tumour DNA in mice serum.
    Cao X; Ge S; Zhou X; Mao Y; Sun Y; Lu W; Ran M
    Biosens Bioelectron; 2022 Jun; 205():114110. PubMed ID: 35219946
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Dielectrophoresis-Based SERS Sensors for the Detection of Cancer Cells in Microfluidic Chips.
    Szymborski TR; Czaplicka M; Nowicka AB; Trzcińska-Danielewicz J; Girstun A; Kamińska A
    Biosensors (Basel); 2022 Aug; 12(9):. PubMed ID: 36140065
    [TBL] [Abstract][Full Text] [Related]  

  • 44. A nanostructured microfluidic device for plasmon-assisted electrochemical detection of hydrogen peroxide released from cancer cells.
    Del Real Mata C; Siavash Moakhar R; Hosseini II; Jalali M; Mahshid S
    Nanoscale; 2021 Sep; 13(34):14316-14329. PubMed ID: 34477715
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Ultrasensitive detection of gastric cancer biomarkers
    Huang Y; Liu Z; Qin X; Liu J; Yang Y; Wei W
    Analyst; 2023 Jul; 148(14):3295-3305. PubMed ID: 37318011
    [TBL] [Abstract][Full Text] [Related]  

  • 46. One-step fabrication of nanostructures by femtosecond laser for surface-enhanced Raman scattering.
    Lin CH; Jiang L; Chai YH; Xiao H; Chen SJ; Tsai HL
    Opt Express; 2009 Nov; 17(24):21581-9. PubMed ID: 19997399
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Distinguishing cancer cell lines at a single living cell level via detection of sialic acid by dual-channel plasmonic imaging and by using a SERS-microfluidic droplet platform.
    Cong L; Liang L; Cao F; Sun D; Yue J; Xu W; Liang C; Xu S
    Mikrochim Acta; 2019 May; 186(6):367. PubMed ID: 31115772
    [TBL] [Abstract][Full Text] [Related]  

  • 48. 3D Flexible SERS Substrates Integrated with a Portable Raman Analyzer and Wireless Communication for Point-of-Care Application.
    Zhang H; Zhao N; Li H; Wang M; Hao X; Sun M; Li X; Yang Z; Yu H; Tian C; Wang C
    ACS Appl Mater Interfaces; 2022 Nov; 14(45):51253-51264. PubMed ID: 36322068
    [TBL] [Abstract][Full Text] [Related]  

  • 49. A new SERS strategy for quantitative analysis of trace microalbuminuria based on immunorecognition and graphene oxide nanoribbon catalysis.
    Wen G; Jing Q; Liang A; Jiang Z
    Int J Nanomedicine; 2018; 13():6099-6107. PubMed ID: 30323597
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Integration of a nanostructured dielectrophoretic device and a surface-enhanced Raman probe for highly sensitive rapid bacteria detection.
    Madiyar FR; Bhana S; Swisher LZ; Culbertson CT; Huang X; Li J
    Nanoscale; 2015 Feb; 7(8):3726-36. PubMed ID: 25641315
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Rapid detection of tebuconazole based on hydrogel SERS chips.
    Chen M; Lai X; Su B; Jiang X; Xu J; Fu F; Lin Z; Dong Y
    Talanta; 2024 Sep; 277():126309. PubMed ID: 38795591
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Wave-shaped microfluidic chip assisted point-of-care testing for accurate and rapid diagnosis of infections.
    Yin BF; Wan XH; Yang MZ; Qian CC; Sohan ASMMF
    Mil Med Res; 2022 Feb; 9(1):8. PubMed ID: 35144683
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Microfluidic
    Nie Y; Jin C; Zhang JXJ
    ACS Sens; 2021 Jul; 6(7):2584-2592. PubMed ID: 34148342
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Waveguiding and SERS Simplified Raman Spectroscopy on Biological Samples.
    Valpapuram I; Candeloro P; Coluccio ML; Parrotta EI; Giugni A; Das G; Cuda G; Di Fabrizio E; Perozziello G
    Biosensors (Basel); 2019 Mar; 9(1):. PubMed ID: 30832416
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Microfluidic Point-of-Care (POC) Devices in Early Diagnosis: A Review of Opportunities and Challenges.
    Yang SM; Lv S; Zhang W; Cui Y
    Sensors (Basel); 2022 Feb; 22(4):. PubMed ID: 35214519
    [TBL] [Abstract][Full Text] [Related]  

  • 56. An electrochemical sensor based on FeCo bimetallic single-atom nanozyme for sensitive detection of H
    Liang Y; Liu Y; Zhao P; Chen Y; Lei J; Hou J; Hou C; Huo D
    Anal Chim Acta; 2023 Nov; 1281():341867. PubMed ID: 38783733
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Convenient formation of nanoparticle aggregates on microfluidic chips for highly sensitive SERS detection of biomolecules.
    Zhou J; Ren K; Zhao Y; Dai W; Wu H
    Anal Bioanal Chem; 2012 Feb; 402(4):1601-9. PubMed ID: 22127578
    [TBL] [Abstract][Full Text] [Related]  

  • 58. CO
    Yao Y; Fan Y
    Biomed Microdevices; 2021 Sep; 23(4):47. PubMed ID: 34550472
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Amplification-free SERS analysis of DNA mutation in cancer cells with single-base sensitivity.
    Wu L; Garrido-Maestu A; Guerreiro JRL; Carvalho S; Abalde-Cela S; Prado M; Diéguez L
    Nanoscale; 2019 Apr; 11(16):7781-7789. PubMed ID: 30951061
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Femtosecond laser fabrication of monolithically integrated microfluidic sensors in glass.
    He F; Liao Y; Lin J; Song J; Qiao L; Cheng Y; Sugioka K
    Sensors (Basel); 2014 Oct; 14(10):19402-40. PubMed ID: 25330047
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.