These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
125 related articles for article (PubMed ID: 38964121)
1. Engineering robust and transparent dual-crosslinked hydrogels for multimodal sensing without conductive additives. Zheng Y; Cui T; Wang J; Hu Y; Gui Z J Colloid Interface Sci; 2024 Dec; 675():14-23. PubMed ID: 38964121 [TBL] [Abstract][Full Text] [Related]
2. Advancing high-performance tailored dual-crosslinking network organo-hydrogel flexible device for wireless wearable sensing. Zheng Y; Wang J; Cui T; Zhu J; Gui Z J Colloid Interface Sci; 2024 Jan; 653(Pt A):56-66. PubMed ID: 37708732 [TBL] [Abstract][Full Text] [Related]
3. Ultrastrong and Tough Urushiol-Based Ionic Conductive Double Network Hydrogels as Flexible Strain Sensors. Lin F; Zhu Y; You Z; Li W; Chen J; Zheng X; Zheng G; Song Z; You X; Xu Y Polymers (Basel); 2023 Jul; 15(15):. PubMed ID: 37571113 [TBL] [Abstract][Full Text] [Related]
4. Mussel-inspired adhesive and conductive hydrogel with tunable mechanical properties for wearable strain sensors. Zhang X; Chen J; He J; Bai Y; Zeng H J Colloid Interface Sci; 2021 Mar; 585():420-432. PubMed ID: 33268058 [TBL] [Abstract][Full Text] [Related]
5. Transparent, Conductive Hydrogels with High Mechanical Strength and Toughness. Xu X; He C; Luo F; Wang H; Peng Z Polymers (Basel); 2021 Jun; 13(12):. PubMed ID: 34207446 [TBL] [Abstract][Full Text] [Related]
6. Highly stretchable, self-healable and adhesive, thermal responsive conductive hydrogel loading nanocellulose complex for a flexible sensor. Chen C; Wang J; Xu Z; Chen N; Wang F Int J Biol Macromol; 2023 Aug; 247():125595. PubMed ID: 37394214 [TBL] [Abstract][Full Text] [Related]
7. Nanocomposite conductive hydrogels with Robust elasticity and multifunctional responsiveness for flexible sensing and wound monitoring. Shen K; Liu Z; Xie R; Zhang Y; Yang Y; Zhao X; Zhang Y; Yang A; Cheng Y Mater Horiz; 2023 Jun; 10(6):2096-2108. PubMed ID: 36939051 [TBL] [Abstract][Full Text] [Related]
8. Cold-resistant, highly stretchable ionic conductive hydrogels for intelligent motion recognition in winter sports. Lei T; Pan J; Wang N; Xia Z; Zhang Q; Fan J; Tao L; Shou W; Gao Y Mater Horiz; 2024 Mar; 11(5):1234-1250. PubMed ID: 38131412 [TBL] [Abstract][Full Text] [Related]
9. A chitosan-based conductive double network hydrogel doped by tannic acid-reduced graphene oxide with excellent stretchability and high sensitivity for wearable strain sensors. Song Y; Xing L; Zou X; Zhang C; Huang Z; Liu W; Wang J Int J Biol Macromol; 2024 Feb; 258(Pt 1):128861. PubMed ID: 38114012 [TBL] [Abstract][Full Text] [Related]
10. Fully physical crosslinked BSA-based conductive hydrogels with high strength and fast self-recovery for human motion and wireless electrocardiogram sensing. Xu J; Zhang H; Guo Z; Zhang C; Tan H; Gong G; Yu M; Xu L Int J Biol Macromol; 2023 Mar; 230():123195. PubMed ID: 36634804 [TBL] [Abstract][Full Text] [Related]
11. Multifunctional Conductive Double-Network Hydrogel Sensors for Multiscale Motion Detection and Temperature Monitoring. Zhao R; Zhao Z; Song S; Wang Y ACS Appl Mater Interfaces; 2023 Dec; 15(51):59854-59865. PubMed ID: 38095585 [TBL] [Abstract][Full Text] [Related]
12. Ionically Conductive Hydrogel with Fast Self-Recovery and Low Residual Strain as Strain and Pressure Sensors. Sun X; Yao F; Wang C; Qin Z; Zhang H; Yu Q; Zhang H; Dong X; Wei Y; Li J Macromol Rapid Commun; 2020 Jul; 41(13):e2000185. PubMed ID: 32500629 [TBL] [Abstract][Full Text] [Related]
13. 3D printed microstructured ultra-sensitive pressure sensors based on microgel-reinforced double network hydrogels for biomechanical applications. Zheng J; Chen G; Yang H; Zhu C; Li S; Wang W; Ren J; Cong Y; Xu X; Wang X; Fu J Mater Horiz; 2023 Oct; 10(10):4232-4242. PubMed ID: 37530138 [TBL] [Abstract][Full Text] [Related]
14. Polyvinyl alcohol/chitosan based nanocomposite organohydrogel flexible wearable strain sensors for sports monitoring and underwater communication rescue. Li Z; Liu P; Chen S; Wang B; Liu S; Cui E; Li F; Yu Y; Pan W; Tang N; Gu Y Int J Biol Macromol; 2024 Feb; 258(Pt 2):129054. PubMed ID: 38159708 [TBL] [Abstract][Full Text] [Related]
15. An effective DLP 3D printing strategy of high strength and toughness cellulose hydrogel towards strain sensing. Guo Z; Ma C; Xie W; Tang A; Liu W Carbohydr Polym; 2023 Sep; 315():121006. PubMed ID: 37230626 [TBL] [Abstract][Full Text] [Related]
16. Strong, conductive, and freezing-tolerant polyacrylamide/PEDOT:PSS/cellulose nanofibrils hydrogels for wearable strain sensors. Zhang M; Wang Y; Liu K; Liu Y; Xu T; Du H; Si C Carbohydr Polym; 2023 Apr; 305():120567. PubMed ID: 36737205 [TBL] [Abstract][Full Text] [Related]
17. A multi-model, large range and anti-freezing sensor based on a multi-crosslinked poly(vinyl alcohol) hydrogel for human-motion monitoring. Gao Y; Peng J; Zhou M; Yang Y; Wang X; Wang J; Cao Y; Wang W; Wu D J Mater Chem B; 2020 Dec; 8(48):11010-11020. PubMed ID: 33188676 [TBL] [Abstract][Full Text] [Related]
18. Dual-Stimuli-Responsive and Anti-Freezing Conductive Ionic Hydrogels for Smart Wearable Devices and Optical Display Devices. Lei D; Xiao Y; Shao L; Xi M; Jiang Y; Li Y ACS Appl Mater Interfaces; 2023 May; 15(20):24175-24185. PubMed ID: 37186879 [TBL] [Abstract][Full Text] [Related]
19. Anti-freezing, recoverable and transparent conductive hydrogels co-reinforced by ethylene glycol as flexible sensors for human motion monitoring. Li Z; Yin F; He W; Hang T; Li Z; Zheng J; Li X; Jiang S; Chen Y Int J Biol Macromol; 2023 Mar; 230():123117. PubMed ID: 36603716 [TBL] [Abstract][Full Text] [Related]
20. Highly Stretchable and Transparent Double-Network Hydrogel Ionic Conductors as Flexible Thermal-Mechanical Dual Sensors and Electroluminescent Devices. Yang B; Yuan W ACS Appl Mater Interfaces; 2019 May; 11(18):16765-16775. PubMed ID: 30983316 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]