These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
125 related articles for article (PubMed ID: 38964121)
21. Highly Robust Conductive Organo-Hydrogels with Powerful Sensing Capabilities Under Large Mechanical Stress. Li T; Qi H; Dong X; Li G; Zhai W Adv Mater; 2024 Feb; 36(5):e2304145. PubMed ID: 37793024 [TBL] [Abstract][Full Text] [Related]
22. High-Strength, Conductive, Antifouling, and Antibacterial Hydrogels for Wearable Strain Sensors. Chen D; Zhao X; Gao H; Ren G; Luo J; Wang H; Zha C; Yang K; Jia P ACS Biomater Sci Eng; 2022 Jun; 8(6):2624-2635. PubMed ID: 35512312 [TBL] [Abstract][Full Text] [Related]
23. Dual-network carboxymethyl chitosan conductive hydrogels for multifunctional sensors and high-performance triboelectric nanogenerators. Xie T; Ou F; Ning C; Tuo L; Zhang Z; Gao Y; Pan W; Li Z; Gao W Carbohydr Polym; 2024 Jun; 333():121960. PubMed ID: 38494218 [TBL] [Abstract][Full Text] [Related]
24. Induction of polymer-grafted cellulose nanocrystals in hydrogel nanocomposites to increase anti-swelling, mechanical properties and conductive self-recovery for underwater strain sensing. Chen Y; Wu W; Cao X; Li B Int J Biol Macromol; 2024 Aug; 274(Pt 2):133410. PubMed ID: 38925178 [TBL] [Abstract][Full Text] [Related]
25. High Multi-Environmental Mechanical Stability and Adhesive Transparent Ionic Conductive Hydrogels Used as Smart Wearable Devices. Wu Y; Liu J; Chen Z; Chen Y; Chen W; Li H; Liu H Polymers (Basel); 2022 Dec; 14(23):. PubMed ID: 36501708 [TBL] [Abstract][Full Text] [Related]
26. Highly Sensitive Pressure and Strain Sensors Based on Stretchable and Recoverable Ion-Conductive Physically Cross-Linked Double-Network Hydrogels. Zhou L; Wang Z; Wu C; Cong Y; Zhang R; Fu J ACS Appl Mater Interfaces; 2020 Nov; 12(46):51969-51977. PubMed ID: 33147947 [TBL] [Abstract][Full Text] [Related]
27. Lanternarene-Based Self-Sorting Double-Network Hydrogels for Flexible Strain Sensors. Gao ZQ; Liu CH; Zhang SL; Li SH; Gao LW; Chai RL; Zhou TY; Ma XJ; Li X; Li S; Zhao J; Zhao Q Small; 2024 Oct; 20(43):e2404231. PubMed ID: 38943438 [TBL] [Abstract][Full Text] [Related]
28. Facile fabrication of strong and conductive cellulose hydrogels with wide temperature tolerance for flexible sensors. Shu L; Zhang XF; Wu Y; Wang Z; Yao J Int J Biol Macromol; 2023 Jun; 240():124438. PubMed ID: 37060973 [TBL] [Abstract][Full Text] [Related]
29. Tough, conductive hydrogels based on gelatin and oxidized sodium carboxymethyl cellulose as flexible sensors. Qin X; Zhao Z; Deng J; Zhao Y; Liang S; Yi Y; Li J; Wei Y Carbohydr Polym; 2024 Jul; 335():121920. PubMed ID: 38616070 [TBL] [Abstract][Full Text] [Related]
30. Tough, recyclable and biocompatible carrageenan-modified polyvinyl alcohol ionic hydrogel with physical cross-linked for multimodal sensing. Zeng L; Liu B; Duan L; Gao G Int J Biol Macromol; 2023 Dec; 253(Pt 4):126954. PubMed ID: 37734518 [TBL] [Abstract][Full Text] [Related]
31. Highly conductive and anti-freezing cellulose hydrogel for flexible sensors. Shu L; Wang Z; Zhang XF; Yao J Int J Biol Macromol; 2023 Mar; 230():123425. PubMed ID: 36706872 [TBL] [Abstract][Full Text] [Related]
32. Self-Healing, Self-Adhesive Silk Fibroin Conductive Hydrogel as a Flexible Strain Sensor. Zheng H; Lin N; He Y; Zuo B ACS Appl Mater Interfaces; 2021 Aug; 13(33):40013-40031. PubMed ID: 34375080 [TBL] [Abstract][Full Text] [Related]
33. Nanomaterial based PVA nanocomposite hydrogels for biomedical sensing: Advances toward designing the ideal flexible/wearable nanoprobes. Karimzadeh Z; Mahmoudpour M; Rahimpour E; Jouyban A Adv Colloid Interface Sci; 2022 Jul; 305():102705. PubMed ID: 35640315 [TBL] [Abstract][Full Text] [Related]
34. Cellulose nanocrystals boosted hydrophobic association in dual network polymer hydrogels as advanced flexible strain sensor for human motion detection. Khan M; Shah LA; Rahman TU; Yoo HM; Ye D; Vacharasin J J Mech Behav Biomed Mater; 2023 Feb; 138():105610. PubMed ID: 36509014 [TBL] [Abstract][Full Text] [Related]
35. Mxene Reinforced Supramolecular Hydrogels with High Strength, Stretchability, and Reliable Conductivity for Sensitive Strain Sensors. Zeng Z; Yu S; Guo C; Lu D; Geng Z; Pei D Macromol Rapid Commun; 2022 Aug; 43(15):e2200103. PubMed ID: 35319127 [TBL] [Abstract][Full Text] [Related]
36. Dually-crosslinked ionic conductive hydrogels reinforced through biopolymer gellan gum for flexible sensors to monitor human activities. Ara L; Sher M; Khan M; Rehman TU; Shah LA; Yoo HM Int J Biol Macromol; 2024 Sep; 276(Pt 1):133789. PubMed ID: 38992556 [TBL] [Abstract][Full Text] [Related]
37. Skin-conformal MXene-doped wearable sensors with self-adhesive, dual-mode sensing, and high sensitivity for human motions and wireless monitoring. Sun Y; Wang S; Du X; Du Z; Wang H; Cheng X J Mater Chem B; 2021 Oct; 9(41):8667-8675. PubMed ID: 34610630 [TBL] [Abstract][Full Text] [Related]
38. One-step of ionic liquid-assisted stabilization and dispersion: Exfoliated graphene and its applications in stimuli-responsive conductive hydrogels based on chitosan. Zhang X; Zhang H; Lv X; Xie T; Chen J; Fang D; Yi S Int J Biol Macromol; 2024 Jun; 271(Pt 1):132699. PubMed ID: 38824103 [TBL] [Abstract][Full Text] [Related]
39. Bio-Inspired Conductive Hydrogels with High Toughness and Ultra-Stability as Wearable Human-Machine Interfaces for all Climates. Cui Z; Liu C; Fang S; Xu J; Zhao Z; Fang J; Shen Z; Cong Z; Niu J Macromol Rapid Commun; 2023 Oct; 44(19):e2300324. PubMed ID: 37462222 [TBL] [Abstract][Full Text] [Related]
40. Self-Recovery, Fatigue-Resistant, and Multifunctional Sensor Assembled by a Nanocellulose/Carbon Nanotube Nanocomplex-Mediated Hydrogel. Lu Y; Yue Y; Ding Q; Mei C; Xu X; Wu Q; Xiao H; Han J ACS Appl Mater Interfaces; 2021 Oct; 13(42):50281-50297. PubMed ID: 34637615 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]