These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
125 related articles for article (PubMed ID: 38964121)
41. A high-conductive, anti-freezing, antibacterial and anti-swelling starch-based physical hydrogel for multifunctional flexible wearable sensors. Lu L; Huang Z; Li X; Li X; Cui B; Yuan C; Guo L; Liu P; Dai Q Int J Biol Macromol; 2022 Jul; 213():791-803. PubMed ID: 35679959 [TBL] [Abstract][Full Text] [Related]
42. Anti-freezing hydrogel regulated by ice-structuring proteins/cellulose nanofibers system as flexible sensor for winter sports. Gao X; Wu J; Wang Y; Wang Y; Zhang Y; Nguyen TT; Guo M Int J Biol Macromol; 2024 Apr; 265(Pt 2):131118. PubMed ID: 38522685 [TBL] [Abstract][Full Text] [Related]
43. Using chitosan nanofibers to simultaneously improve the toughness and sensing performance of chitosan-based ionic conductive hydrogels. Wang X; Wang B; Liu W; Yu D; Song Z; Li G; Liu X; Wang H; Ge S Int J Biol Macromol; 2024 Mar; 260(Pt 1):129272. PubMed ID: 38211925 [TBL] [Abstract][Full Text] [Related]
44. Tough and Strain-Sensitive Organohydrogels Based on MXene and PEDOT/PSS and Their Effects on Mechanical Properties and Strain-Sensing Performance. Bi D; Qu N; Sheng W; Lin T; Huang S; Wang L; Li R ACS Appl Mater Interfaces; 2024 Mar; 16(9):11914-11929. PubMed ID: 38383343 [TBL] [Abstract][Full Text] [Related]
45. Muscle-inspired anisotropic carboxymethyl cellulose-based double-network conductive hydrogels for flexible strain sensors. Zhong L; Zhang Y; Liu F; Wang L; Feng Q; Chen C; Xu Z Int J Biol Macromol; 2023 Sep; 248():125973. PubMed ID: 37495000 [TBL] [Abstract][Full Text] [Related]
46. Preparation of strong, tough and conductive soy protein isolate/poly(vinyl alcohol)-based hydrogel via the synergy of biomineralization and salting out. Deng Y; Yang M; Xiao G; Jiang X Int J Biol Macromol; 2024 Feb; 257(Pt 1):128566. PubMed ID: 38056752 [TBL] [Abstract][Full Text] [Related]
47. High-Strength Double-Network Conductive Hydrogels Based on Polyvinyl Alcohol and Polymerizable Deep Eutectic Solvent. Zhang Y; Jiang L; Zhang H; Li Q; Ma N; Zhang X; Ma L Molecules; 2023 Jun; 28(12):. PubMed ID: 37375245 [TBL] [Abstract][Full Text] [Related]
48. Dual-Sensing, Stretchable, Fatigue-Resistant, Adhesive, and Conductive Hydrogels Used as Flexible Sensors for Human Motion Monitoring. Kang B; Yan X; Zhao Z; Song S Langmuir; 2022 Jun; 38(22):7013-7023. PubMed ID: 35613322 [TBL] [Abstract][Full Text] [Related]
49. Highly Stretchable, Fast Self-Healing, Self-Adhesive, and Strain-Sensitive Wearable Sensor Based on Ionic Conductive Hydrogels. Li R; Ren J; Zhang M; Li M; Li Y; Yang W Biomacromolecules; 2024 Feb; 25(2):614-625. PubMed ID: 38241010 [TBL] [Abstract][Full Text] [Related]
50. Highly stretchable polyvinyl alcohol composite conductive hydrogel sensors reinforced by cellulose nanofibrils and liquid metal for information transmission. Hang T; Chen Y; Yin F; Shen J; Li X; Li Z; Zheng J Int J Biol Macromol; 2024 Feb; 258(Pt 1):128855. PubMed ID: 38114002 [TBL] [Abstract][Full Text] [Related]
51. Natural Glycyrrhizic Acid-Tailored Homogeneous Conductive Polyaniline Hydrogel as a Flexible Strain Sensor. Zhao L; Zhang H; Guo Z; Yu X; Jiao X; Li MH; Hu J ACS Appl Mater Interfaces; 2022 Nov; 14(45):51394-51403. PubMed ID: 36397311 [TBL] [Abstract][Full Text] [Related]
52. Highly Elastic, Sensitive, Stretchable, and Skin-Inspired Conductive Sodium Alginate/Polyacrylamide/Gallium Composite Hydrogel with Toughness as a Flexible Strain Sensor. Cao Q; Shu Z; Zhang T; Ji W; Chen J; Wei Y Biomacromolecules; 2022 Jun; 23(6):2603-2613. PubMed ID: 35617102 [TBL] [Abstract][Full Text] [Related]
53. 3D-Printed Hydrogels with High-Strength and Anisotropy Mediated by Chain Rigidity. Kong D; Li Y; Yang B; Pang Y; Yuan H; Du C; Tan Y Small; 2024 Jul; ():e2403052. PubMed ID: 38970551 [TBL] [Abstract][Full Text] [Related]
54. Preparation of stretchable and self-healable dual ionically cross-linked hydrogel based on chitosan/polyacrylic acid with anti-freezing property for multi-model flexible sensing and detection. Liang Y; Shen Y; Sun X; Liang H Int J Biol Macromol; 2021 Dec; 193(Pt A):629-637. PubMed ID: 34717973 [TBL] [Abstract][Full Text] [Related]
55. A Bilayer Skin-Inspired Hydrogel with Strong Bonding Interface. He C; Xu X; Lin Y; Cui Y; Peng Z Nanomaterials (Basel); 2022 Mar; 12(7):. PubMed ID: 35407253 [TBL] [Abstract][Full Text] [Related]
56. Transparent, conductive cellulose hydrogel for flexible sensor and triboelectric nanogenerator at subzero temperature. Hu Y; Zhang M; Qin C; Qian X; Zhang L; Zhou J; Lu A Carbohydr Polym; 2021 Aug; 265():118078. PubMed ID: 33966842 [TBL] [Abstract][Full Text] [Related]
57. A stretchable, self-healing conductive hydrogels based on nanocellulose supported graphene towards wearable monitoring of human motion. Zheng C; Lu K; Lu Y; Zhu S; Yue Y; Xu X; Mei C; Xiao H; Wu Q; Han J Carbohydr Polym; 2020 Dec; 250():116905. PubMed ID: 33049881 [TBL] [Abstract][Full Text] [Related]
58. Solution-Processable Conductive Composite Hydrogels with Multiple Synergetic Networks toward Wearable Pressure/Strain Sensors. Wei H; Kong D; Li T; Xue Q; Wang S; Cui D; Huang Y; Wang L; Hu S; Wan T; Yang G ACS Sens; 2021 Aug; 6(8):2938-2951. PubMed ID: 34328311 [TBL] [Abstract][Full Text] [Related]
59. Polypyrrole-Doped Conductive Self-Healing Composite Hydrogels with High Toughness and Stretchability. Zhao L; Li X; Li Y; Wang X; Yang W; Ren J Biomacromolecules; 2021 Mar; 22(3):1273-1281. PubMed ID: 33596651 [TBL] [Abstract][Full Text] [Related]
60. A Surface-Confined Gradient Conductive Network Strategy for Transparent Strain Sensors toward Full-Range Monitoring. Xu X; Chen R; Li Y; Yu D; Chen J; Wyman I; Xiao C; Peng S; Chen Y; Hu X; Wu X ACS Appl Mater Interfaces; 2021 Sep; 13(36):43806-43819. PubMed ID: 34478269 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]