These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

116 related articles for article (PubMed ID: 38964418)

  • 1. A grid-wise approach for accurate computation of Standardized Runoff Index (SRI).
    Kadapala BKR; Asha Farsana M; Geetha Vimala CH; Joshi S; Abdul Hakeem K; Raju PV
    Sci Total Environ; 2024 Oct; 946():174472. PubMed ID: 38964418
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Regional frequency analysis of drought severity and duration in Karkheh River Basin, Iran using univariate L-moments method.
    Parvizi S; Eslamian S; Gheysari M; Gohari A; Kopai SS
    Environ Monit Assess; 2022 Apr; 194(5):336. PubMed ID: 35389125
    [TBL] [Abstract][Full Text] [Related]  

  • 3. On the potentials of multiple climate variables in assessing the spatio-temporal characteristics of hydrological droughts over the Volta Basin.
    Ndehedehe CE; Awange JL; Corner RJ; Kuhn M; Okwuashi O
    Sci Total Environ; 2016 Jul; 557-558():819-37. PubMed ID: 27064845
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Multiple drought indices and their teleconnections with ENSO in various spatiotemporal scales over the Mekong River Basin.
    Nguyen TT; Li MH; Vu TM; Chen PY
    Sci Total Environ; 2023 Jan; 854():158589. PubMed ID: 36087676
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Direct and indirect simulating and projecting hydrological drought using a supervised machine learning method.
    Eini MR; Najminejad F; Piniewski M
    Sci Total Environ; 2023 Nov; 898():165523. PubMed ID: 37454850
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Monitoring of meteorological and hydrological droughts in the Vistula basin (Poland).
    Kubiak-Wójcicka K; Bąk B
    Environ Monit Assess; 2018 Oct; 190(11):691. PubMed ID: 30377833
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Response of the runoff process to meteorological drought: Baseflow index as an important indicator.
    Mao R; Shi A; Song J; Xu W; Tang B; Li B
    J Environ Manage; 2023 Nov; 345():118843. PubMed ID: 37598491
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [Runoff Simulation and Its Response to Extreme Precipitation in the Yangtze River Basin].
    Gao S; Ti CP; Tang SR; Wang XL; Wang HY; Meng L; Yan XY
    Huan Jing Ke Xue; 2023 Sep; 44(9):4853-4862. PubMed ID: 37699804
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Evaluation of drought propagations with multiple indices in the Yangtze River basin.
    Um MJ; Kim Y; Jung K; Lee M; An H; Min I; Kwak J; Park D
    J Environ Manage; 2022 Sep; 317():115494. PubMed ID: 35751287
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Drought analysis with different indices for the Asi Basin (Turkey).
    Dikici M
    Sci Rep; 2020 Nov; 10(1):20739. PubMed ID: 33244138
    [TBL] [Abstract][Full Text] [Related]  

  • 11. How is the risk of hydrological drought in the Tarim River Basin, Northwest China?
    Yang P; Xia J; Zhang Y; Zhan C; Sun S
    Sci Total Environ; 2019 Nov; 693():133555. PubMed ID: 31374500
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Water Level Reconstruction and Prediction Based on Space-Borne Sensors: A Case Study in the Mekong and Yangtze River Basins.
    He Q; Fok HS; Chen Q; Chun KP
    Sensors (Basel); 2018 Sep; 18(9):. PubMed ID: 30217044
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Evaluation of agricultural drought in Luanhe River Basin based on the standardized soil moisture index.].
    Yang WJ; Li JZ; Feng P
    Ying Yong Sheng Tai Xue Bao; 2022 Mar; 33(3):801-807. PubMed ID: 35524534
    [TBL] [Abstract][Full Text] [Related]  

  • 14. IHACRES, GR4J and MISD-based multi conceptual-machine learning approach for rainfall-runoff modeling.
    Mohammadi B; Safari MJS; Vazifehkhah S
    Sci Rep; 2022 Jul; 12(1):12096. PubMed ID: 35840640
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Tracking seasonal and monthly drought with GRACE-based terrestrial water storage assessments over major river basins in South India.
    Satish Kumar K; Venkata Rathnam E; Sridhar V
    Sci Total Environ; 2021 Apr; 763():142994. PubMed ID: 33129527
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Integrating conceptual and machine learning models to enhance daily-Scale streamflow simulation and assessing climate change impact in the watersheds of the Godavari basin, India.
    Reddy NM; Saravanan S; Paneerselvam B
    Environ Res; 2024 Jun; 250():118403. PubMed ID: 38365058
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Inter-comparison of water balance components of river basins draining into selected delta districts of Eastern India.
    Visakh S; Raju PV; Kulkarni SS; Diwakar PG
    Sci Total Environ; 2019 Mar; 654():1258-1269. PubMed ID: 30841399
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Enhancing dynamic flood risk assessment and zoning using a coupled hydrological-hydrodynamic model and spatiotemporal information weighting method.
    Zhou L; Liu L
    J Environ Manage; 2024 Jul; 366():121831. PubMed ID: 39018862
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Study on hydrological response of runoff to land use change in the Jing River Basin, China.
    Jin T; Zhang X; Xie J; Liang J; Wang T
    Environ Sci Pollut Res Int; 2023 Sep; 30(45):101075-101090. PubMed ID: 37646927
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Drought evaluation using the GRACE terrestrial water storage deficit over the Yangtze River Basin, China.
    Sun Z; Zhu X; Pan Y; Zhang J; Liu X
    Sci Total Environ; 2018 Sep; 634():727-738. PubMed ID: 29649717
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.