These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

137 related articles for article (PubMed ID: 38964485)

  • 1. Knockout of cryptochrome 1 disrupts circadian rhythm and photoperiodic diapause induction in the silkworm, Bombyx mori.
    Tobita H; Kiuchi T
    Insect Biochem Mol Biol; 2024 Jul; ():104153. PubMed ID: 38964485
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Knockouts of positive and negative elements of the circadian clock disrupt photoperiodic diapause induction in the silkworm, Bombyx mori.
    Tobita H; Kiuchi T
    Insect Biochem Mol Biol; 2022 Oct; 149():103842. PubMed ID: 36115518
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Involvement of the Clock Gene
    Ikeda K; Daimon T; Shiomi K; Udaka H; Numata H
    Zoolog Sci; 2021 Dec; 38(6):523-530. PubMed ID: 34854284
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Circadian Clock Genes Regulate Temperature-Dependent Diapause Induction in Silkworm
    Homma S; Murata A; Ikegami M; Kobayashi M; Yamazaki M; Ikeda K; Daimon T; Numata H; Mizoguchi A; Shiomi K
    Front Physiol; 2022; 13():863380. PubMed ID: 35574475
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Significance of the clock gene period in photoperiodism in larval development and production of diapause eggs in the silkworm Bombyx mori.
    Hasebe M; Sato M; Ushioda S; Kusuhara W; Kominato K; Shiga S
    J Insect Physiol; 2024 Mar; 153():104615. PubMed ID: 38237657
    [TBL] [Abstract][Full Text] [Related]  

  • 6. CRISPR/Cas9-based knockout reveals that the clock gene timeless is indispensable for regulating circadian behavioral rhythms in Bombyx mori.
    Nartey MA; Sun X; Qin S; Hou CX; Li MW
    Insect Sci; 2021 Oct; 28(5):1414-1425. PubMed ID: 32830431
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Photoperiodism of Diapause Induction in the Silkworm,
    Shimizu I
    Zoolog Sci; 2024 Apr; 41(2):141-158. PubMed ID: 38587909
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Adaptive Differences in Circadian Clock Gene Expression Patterns and Photoperiodic Diapause Induction in
    Dalla Benetta E; Beukeboom LW; van de Zande L
    Am Nat; 2019 Jun; 193(6):881-896. PubMed ID: 31094595
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Comparisons in temperature and photoperiodic-dependent diapause induction between domestic and wild mulberry silkworms.
    Yokoyama T; Saito S; Shimoda M; Kobayashi M; Takasu Y; Sezutsu H; Kato Y; Tominaga M; Mizoguchi A; Shiomi K
    Sci Rep; 2021 Apr; 11(1):8052. PubMed ID: 33850226
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Differential expression of circadian clock genes in two strains of beetles reveals candidates related to photoperiodic induction of summer diapause.
    Zhu L; Liu W; Tan QQ; Lei CL; Wang XP
    Gene; 2017 Mar; 603():9-14. PubMed ID: 27956169
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Photoperiodic diapause under the control of circadian clock genes in an insect.
    Ikeno T; Tanaka SI; Numata H; Goto SG
    BMC Biol; 2010 Sep; 8():116. PubMed ID: 20815865
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Circadian clock genes link photoperiodic signals to lipid accumulation during diapause preparation in the diapause-destined female cabbage beetles Colaphellus bowringi.
    Zhu L; Tian Z; Guo S; Liu W; Zhu F; Wang XP
    Insect Biochem Mol Biol; 2019 Jan; 104():1-10. PubMed ID: 30423421
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The clock gene Cryptochrome 1 is involved in the photoresponse of embryonic hatching behavior in Bombyx mori.
    Yuan XN; Luo C; Zhao QF; Zhong SY; Hang Q; Dai TM; Pan ZH; Sima YH; Qiu JF; Xu SQ
    Arch Insect Biochem Physiol; 2023 Nov; 114(3):e22046. PubMed ID: 37583246
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Circadian and Neuroendocrine Basis of Photoperiodism Controlling Diapause in Insects and Mites: A Review.
    Takeda M; Suzuki T
    Front Physiol; 2022; 13():867621. PubMed ID: 35812309
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mapping and quantification of cryptochrome expression in the brain of the pea aphid Acyrthosiphon pisum.
    Barberà M; Collantes-Alegre JM; Martínez-Torres D
    Insect Mol Biol; 2022 Apr; 31(2):159-169. PubMed ID: 34743397
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Involvement of the Clock Gene period in the Circadian Rhythm of the Silkmoth Bombyx mori.
    Ikeda K; Daimon T; Sezutsu H; Udaka H; Numata H
    J Biol Rhythms; 2019 Jun; 34(3):283-292. PubMed ID: 30947602
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Photoperiodic response requires mammalian-type cryptochrome in the bean bug Riptortus pedestris.
    Ikeno T; Numata H; Goto SG
    Biochem Biophys Res Commun; 2011 Jul; 410(3):394-7. PubMed ID: 21669185
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Impact of photoperiod and functional clock on male diapause in cryptochrome and pdf mutants in the linden bug Pyrrhocoris apterus.
    Kaniewska MM; Chvalová D; Dolezel D
    J Comp Physiol A Neuroethol Sens Neural Behav Physiol; 2024 Jul; 210(4):575-584. PubMed ID: 37302092
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Circadian Clock Gene
    Cui WZ; Qiu JF; Dai TM; Chen Z; Li JL; Liu K; Wang YJ; Sima YH; Xu SQ
    Biology (Basel); 2021 Aug; 10(9):. PubMed ID: 34571719
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Circadian photoreception in Drosophila: functions of cryptochrome in peripheral and central clocks.
    Ivanchenko M; Stanewsky R; Giebultowicz JM
    J Biol Rhythms; 2001 Jun; 16(3):205-15. PubMed ID: 11407780
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.