These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
135 related articles for article (PubMed ID: 38964855)
1. Genetically modified indigenous Pseudomonas aeruginosa drove bacterial community to change positively toward microbial enhanced oil recovery applications. Zhao F; Wang B; Cui Q; Wu Y J Appl Microbiol; 2024 Jul; 135(7):. PubMed ID: 38964855 [TBL] [Abstract][Full Text] [Related]
2. Bioaugmentation of oil reservoir indigenous Pseudomonas aeruginosa to enhance oil recovery through in-situ biosurfactant production without air injection. Zhao F; Li P; Guo C; Shi RJ; Zhang Y Bioresour Technol; 2018 Mar; 251():295-302. PubMed ID: 29289873 [TBL] [Abstract][Full Text] [Related]
3. Directional culture of petroleum hydrocarbon degrading bacteria for enhancing crude oil recovery. Li H; Lai R; Jin Y; Fang X; Cui K; Sun S; Gong Y; Li H; Zhang Z; Zhang G; Zhang Z J Hazard Mater; 2020 May; 390():122160. PubMed ID: 31999958 [TBL] [Abstract][Full Text] [Related]
4. Biosurfactant-Producing Capability and Prediction of Functional Genes Potentially Beneficial to Microbial Enhanced Oil Recovery in Indigenous Bacterial Communities of an Onshore Oil Reservoir. Phetcharat T; Dawkrajai P; Chitov T; Mhuantong W; Champreda V; Bovonsombut S Curr Microbiol; 2019 Mar; 76(3):382-391. PubMed ID: 30734843 [TBL] [Abstract][Full Text] [Related]
5. Microbial surfactant-enhanced mineral oil recovery under laboratory conditions. Bordoloi NK; Konwar BK Colloids Surf B Biointerfaces; 2008 May; 63(1):73-82. PubMed ID: 18164187 [TBL] [Abstract][Full Text] [Related]
6. Oxygen effects on rhamnolipids production by Pseudomonas aeruginosa. Zhao F; Shi R; Ma F; Han S; Zhang Y Microb Cell Fact; 2018 Mar; 17(1):39. PubMed ID: 29523151 [TBL] [Abstract][Full Text] [Related]
7. Crude oil biodegradation potential of biosurfactant-producing Pseudomonas aeruginosa and Meyerozyma sp. Rehman R; Ali MI; Ali N; Badshah M; Iqbal M; Jamal A; Huang Z J Hazard Mater; 2021 Sep; 418():126276. PubMed ID: 34119978 [TBL] [Abstract][Full Text] [Related]
8. Production of microbial rhamnolipid by Pseudomonas aeruginosa MM1011 for ex situ enhanced oil recovery. Amani H; Müller MM; Syldatk C; Hausmann R Appl Biochem Biotechnol; 2013 Jul; 170(5):1080-93. PubMed ID: 23640261 [TBL] [Abstract][Full Text] [Related]
9. Production of lipopeptide biosurfactants by Bacillus atrophaeus 5-2a and their potential use in microbial enhanced oil recovery. Zhang J; Xue Q; Gao H; Lai H; Wang P Microb Cell Fact; 2016 Oct; 15(1):168. PubMed ID: 27716284 [TBL] [Abstract][Full Text] [Related]
10. Characterization of two novel strains of Pseudomonas aeruginosa on biodegradation of crude oil and its enzyme activities. Muthukumar B; Al Salhi MS; Narenkumar J; Devanesan S; Tentu Nageswara Rao ; Kim W; Rajasekar A Environ Pollut; 2022 Jul; 304():119223. PubMed ID: 35351596 [TBL] [Abstract][Full Text] [Related]
11. Enhanced biodegradation of crude oil in soil by a developed bacterial consortium and indigenous plant growth promoting bacteria. Diallo MM; Vural C; Cay H; Ozdemir G J Appl Microbiol; 2021 Apr; 130(4):1192-1207. PubMed ID: 32916758 [TBL] [Abstract][Full Text] [Related]
12. Effect of exogenous inoculants on enhancing oil recovery and indigenous bacterial community dynamics in long-term field pilot of low permeability reservoir. Li J; Xue S; He C; Qi H; Chen F; Ma Y World J Microbiol Biotechnol; 2018 Mar; 34(4):53. PubMed ID: 29558004 [TBL] [Abstract][Full Text] [Related]
13. Enhanced biodegradation and emulsification of crude oil and hyperproduction of biosurfactants by a gamma ray-induced mutant of Pseudomonas aeruginosa. Iqbal S; Khalid ZM; Malik KA Lett Appl Microbiol; 1995 Sep; 21(3):176-9. PubMed ID: 7576503 [TBL] [Abstract][Full Text] [Related]
14. Response Characteristics of the Community Structure and Metabolic Genes of Oil-Recovery Bacteria after Targeted Activation of Petroleum Hydrocarbon-Degrading Bacteria in Low-Permeability Oil Reservoirs. Gao Y; Wang W; Jiang S; Jin Z; Guo M; Wang M; Li H; Cui K ACS Omega; 2024 Aug; 9(31):33448-33458. PubMed ID: 39130570 [TBL] [Abstract][Full Text] [Related]
15. Biosurfactant-assisted bioremediation of crude oil by indigenous bacteria isolated from Taean beach sediment. Lee DW; Lee H; Kwon BO; Khim JS; Yim UH; Kim BS; Kim JJ Environ Pollut; 2018 Oct; 241():254-264. PubMed ID: 29807284 [TBL] [Abstract][Full Text] [Related]
16. Characterization of rhamnolipid biosurfactants produced by recombinant Pseudomonas aeruginosa strain DAB with removal of crude oil. He C; Dong W; Li J; Li Y; Huang C; Ma Y Biotechnol Lett; 2017 Sep; 39(9):1381-1388. PubMed ID: 28600649 [TBL] [Abstract][Full Text] [Related]
17. Production, characterization, and application of Pseudoxanthomonas taiwanensis biosurfactant: a green chemical for microbial enhanced oil recovery (MEOR). Purwasena IA; Amaniyah M; Astuti DI; Firmansyah Y; Sugai Y Sci Rep; 2024 May; 14(1):10270. PubMed ID: 38704438 [TBL] [Abstract][Full Text] [Related]
18. Screening of biosurfactant-producing bacteria from offshore oil and gas platforms in North Atlantic Canada. Cai Q; Zhang B; Chen B; Song X; Zhu Z; Cao T Environ Monit Assess; 2015 May; 187(5):284. PubMed ID: 25903403 [TBL] [Abstract][Full Text] [Related]
19. Simultaneous valorization and biocatalytic upgrading of heavy vacuum gas oil by the biosurfactant-producing Pseudomonas aeruginosa AK6U. Ismail WA; Mohamed ME; Awadh MN; Obuekwe C; El Nayal AM Microb Biotechnol; 2017 Nov; 10(6):1628-1639. PubMed ID: 28695623 [TBL] [Abstract][Full Text] [Related]
20. Enrichment of microbial consortia for MEOR in crude oil phase of reservoir-produced liquid and their response to environmental disturbance. Zhu F; Wei Y; Wang F; Xia Z; Gou M; Tang Y Int Microbiol; 2024 Aug; 27(4):1049-1062. PubMed ID: 38010566 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]