These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

147 related articles for article (PubMed ID: 3896507)

  • 1. The localization and rate of disappearance of a synaptic vesicle antigen following denervation.
    Borroni E; Ferretti P; Fiedler W; Fox GQ
    Cell Tissue Res; 1985; 241(2):367-72. PubMed ID: 3896507
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Identification of a proteoglycan antigen characteristic of cholinergic synaptic vesicles.
    Walker JH; Obrocki J; Zimmermann CW
    J Neurochem; 1983 Jul; 41(1):209-16. PubMed ID: 6190993
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Acetylcholine, ATP, and proteoglycan are common to synaptic vesicles isolated from the electric organs of electric eel and electric catfish as well as from rat diaphragm.
    Volknandt W; Zimmermann H
    J Neurochem; 1986 Nov; 47(5):1449-62. PubMed ID: 3760871
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effect of denervation on a cholinergic-specific ganglioside antigen (Chol-1) present in Torpedo electromotor presynaptic plasma membranes.
    Ferretti P; Borroni E
    J Neurochem; 1984 Apr; 42(4):1085-93. PubMed ID: 6699639
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Characterization of a membrane protein from cholinergic synaptic vesicles isolated from the electric organ of Torpedo marmorata.
    Bock E; Heilbronn E; Widlund L
    Biochim Biophys Acta; 1979 Nov; 581(1):71-8. PubMed ID: 508796
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Electron microscopic localization of choline acetyl transferase activity in the electric organ of Torpedo marmorata.
    Munz K; Müller U; Waser PG
    Histochemistry; 1983; 78(3):339-47. PubMed ID: 6885516
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Nerve terminal components from normal and denervated Narcine electric organ.
    Hooper JE; Deutsch JW; Miljanich GP; Brasier AR; Kelly RB
    J Physiol (Paris); 1982; 78(4):443-53. PubMed ID: 7182490
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Identification of a synaptic vesicle antigen (Mr 86,000) conserved between Torpedo and rat.
    Walker JH; Kristjansson GI; Stadler H
    J Neurochem; 1986 Mar; 46(3):875-81. PubMed ID: 3512773
    [TBL] [Abstract][Full Text] [Related]  

  • 9. ATP-dependent calcium uptake by cholinergic synaptic vesicles isolated from Torpedo electric organ.
    Israël M; Manaranche R; Marsal J; Meunier FM; Morel N; Frachon P; Lesbats B
    J Membr Biol; 1980 May; 54(2):115-26. PubMed ID: 7401165
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Identification of a heparan sulphate-containing proteoglycan as a specific core component of cholinergic synaptic vesicles from Torpedo marmorata.
    Stadler H; Dowe GH
    EMBO J; 1982; 1(11):1381-4. PubMed ID: 6233139
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Adenosine triphosphate. A constituent of cholinergic synaptic vesicles.
    Dowdall MJ; Boyne AF; Whittaker VP
    Biochem J; 1974 Apr; 140(1):1-12. PubMed ID: 4451548
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Recycled synaptic vesicles contain vesicle but not plasma membrane marker, newly synthesized acetylcholine, and a sample of extracellular medium.
    Bonzelius F; Zimmermann H
    J Neurochem; 1990 Oct; 55(4):1266-73. PubMed ID: 2398359
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A highly antigenic proteoglycan-like component of cholinergic synaptic vesicles.
    Carlson SS; Kelly RB
    J Biol Chem; 1983 Sep; 258(18):11082-91. PubMed ID: 6193120
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Chemical composition of cholinergic synaptic vesicles from Torpedo marmorata based on improved purification.
    Tashiro T; Stadler H
    Eur J Biochem; 1978 Oct; 90(3):479-87. PubMed ID: 710443
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Acetylcholine incorporation by cholinergic synaptic vesicles from Torpedo marmorata.
    Diebler MF; Morot-Gaudry Y
    J Neurochem; 1981 Aug; 37(2):467-75. PubMed ID: 7264670
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cholinergic vesicle specific proteoglycan: stability in isolated vesicles and in synaptosomes during induced transmitter release.
    Kuhn DM; Volknandt W; Stadler H; Zimmermann H
    J Neurochem; 1988 Jan; 50(1):11-6. PubMed ID: 3121784
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The lipid and protein content of cholinergic synaptic vesicles from the electric organ of Torpedo marmorata purified to constant composition: implications for vesicle structure.
    Ohsawa K; Dowe GH; Morris SJ; Whittaker VP
    Brain Res; 1979 Feb; 161(3):447-57. PubMed ID: 421130
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Zinc blocks acetylcholine release but not vesicle fusion at the Torpedo nerve-electroplate junction.
    Parducz A; Corrèges P; Sors P; Dunant Y
    Eur J Neurosci; 1997 Apr; 9(4):732-8. PubMed ID: 9153579
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Synaptic vesicles in electromotoneurones. I. Axonal transport, site of transmitter uptake and processing of a core proteoglycan during maturation.
    Kiene ML; Stadler H
    EMBO J; 1987 Aug; 6(8):2209-15. PubMed ID: 2444433
    [TBL] [Abstract][Full Text] [Related]  

  • 20. An antiserum specific for cholinergic synaptic vesicles from electric organ.
    Carlson SS; Kelly RB
    J Cell Biol; 1980 Oct; 87(1):98-103. PubMed ID: 7419603
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.