BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

104 related articles for article (PubMed ID: 38965160)

  • 1. Monodispersed mesoscopic star-shaped gold particles via silver-ion-assisted multi-directional growth for highly sensitive SERS-active substrates.
    Kim S; Yoo S; Nam DH; Kim H; Hafner JH; Lee S
    Nano Converg; 2024 Jul; 11(1):26. PubMed ID: 38965160
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Surface-enhanced Raman scattering: realization of localized surface plasmon resonance using unique substrates and methods.
    Hossain MK; Kitahama Y; Huang GG; Han X; Ozaki Y
    Anal Bioanal Chem; 2009 Aug; 394(7):1747-60. PubMed ID: 19384546
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Facile One-Pot Synthesis of Nanodot-Decorated Gold-Silver Alloy Nanoboxes for Single-Particle Surface-Enhanced Raman Scattering Activity.
    Li J; Zhang G; Wang J; Maksymov IS; Greentree AD; Hu J; Shen A; Wang Y; Trau M
    ACS Appl Mater Interfaces; 2018 Sep; 10(38):32526-32535. PubMed ID: 30168708
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Differences between surfactant-free Au@Ag and CTAB-stabilized Au@Ag star-like nanoparticles in the preparation of nanoarrays to improve their surface-enhanced Raman scattering (SERS) performance.
    Van Vu S; Nguyen AT; Cao Tran AT; Thi Le VH; Lo TNH; Ho TH; Pham NNT; Park I; Vo KQ
    Nanoscale Adv; 2023 Oct; 5(20):5543-5561. PubMed ID: 37822906
    [TBL] [Abstract][Full Text] [Related]  

  • 5. NIR-Active Plasmonic Gold Nanocapsules Synthesized Using Thermally Induced Seed Twinning for Surface-Enhanced Raman Scattering Applications.
    Singh P; König TAF; Jaiswal A
    ACS Appl Mater Interfaces; 2018 Nov; 10(45):39380-39390. PubMed ID: 30345737
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Facile tuning of tip sharpness on gold nanostars by the controlled seed-growth method and coating with a silver shell for detection of thiram using surface enhanced Raman spectroscopy (SERS).
    Quang ATN; Nguyen TA; Vu SV; Lo TNH; Park I; Vo KQ
    RSC Adv; 2022 Aug; 12(35):22815-22825. PubMed ID: 36105964
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Tailoring surface plasmons of high-density gold nanostar assemblies on metal films for surface-enhanced Raman spectroscopy.
    Lee J; Hua B; Park S; Ha M; Lee Y; Fan Z; Ko H
    Nanoscale; 2014 Jan; 6(1):616-23. PubMed ID: 24247586
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Plasmonic Nanogap-Enhanced Raman Scattering with Nanoparticles.
    Nam JM; Oh JW; Lee H; Suh YD
    Acc Chem Res; 2016 Dec; 49(12):2746-2755. PubMed ID: 27993009
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Tip-Selective Growth of Silver on Gold Nanostars for Surface-Enhanced Raman Scattering.
    Zhang W; Liu J; Niu W; Yan H; Lu X; Liu B
    ACS Appl Mater Interfaces; 2018 May; 10(17):14850-14856. PubMed ID: 29569899
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Vertically standing nanoporous Al-Ag zig-zag silver nanorod arrays for highly active SERS substrates.
    Rajput A; Kumar S; Singh JP
    Analyst; 2017 Oct; 142(20):3959-3966. PubMed ID: 28951908
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Bimetallic gold-silver nanoplate array as a highly active SERS substrate for detection of streptavidin/biotin assemblies.
    Bi L; Dong J; Xie W; Lu W; Tong W; Tao L; Qian W
    Anal Chim Acta; 2013 Dec; 805():95-100. PubMed ID: 24296148
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Gold Nanorod Assemblies: The Roles of Hot-Spot Positioning and Anisotropy in Plasmon Coupling and SERS.
    Dey P; Baumann V; Rodríguez-Fernández J
    Nanomaterials (Basel); 2020 May; 10(5):. PubMed ID: 32423172
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Hot spots in different metal nanostructures for plasmon-enhanced Raman spectroscopy.
    Wei H; Xu H
    Nanoscale; 2013 Nov; 5(22):10794-805. PubMed ID: 24113688
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Fabrication of gold nanoparticle-embedded metal-organic framework for highly sensitive surface-enhanced Raman scattering detection.
    Hu Y; Liao J; Wang D; Li G
    Anal Chem; 2014 Apr; 86(8):3955-63. PubMed ID: 24646316
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Silver overlayer-modified surface-enhanced Raman scattering-active gold substrates for potential applications in trace detection of biochemical species.
    Ou KL; Hsu TC; Liu YC; Yang KH; Tsai HY
    Anal Chim Acta; 2014 Jan; 806():188-96. PubMed ID: 24331055
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Prospects for plasmonic hot spots in single molecule SERS towards the chemical imaging of live cells.
    Radziuk D; Moehwald H
    Phys Chem Chem Phys; 2015 Sep; 17(33):21072-93. PubMed ID: 25619814
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Hollow Porous Gold Nanoshells with Controlled Nanojunctions for Highly Tunable Plasmon Resonances and Intense Field Enhancements for Surface-Enhanced Raman Scattering.
    Jeong S; Kim MW; Jo YR; Kim NY; Kang D; Lee SY; Yim SY; Kim BJ; Kim JH
    ACS Appl Mater Interfaces; 2019 Nov; 11(47):44458-44465. PubMed ID: 31718128
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Layer-by-layer assembly of Ag nanowires into 3D woodpile-like structures to achieve high density "hot spots" for surface-enhanced Raman scattering.
    Chen M; Phang IY; Lee MR; Yang JK; Ling XY
    Langmuir; 2013 Jun; 29(23):7061-9. PubMed ID: 23706081
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The Rise of Structurally Anisotropic Plasmonic Janus Gold Nanostars.
    Singh P; Kundu K; Seçkin S; Bhardwaj K; König TAF; Jaiswal A
    Chemistry; 2023 Oct; 29(57):e202302100. PubMed ID: 37461223
    [TBL] [Abstract][Full Text] [Related]  

  • 20. 3D aluminum/silver hierarchical nanostructure with large areas of dense hot spots for surface-enhanced raman scattering.
    Zhao N; Li H; Xie Y; Feng Z; Wang Z; Yang Z; Yan X; Wang W; Tian C; Yu H
    Electrophoresis; 2019 Dec; 40(23-24):3123-3131. PubMed ID: 31576580
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.