These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
199 related articles for article (PubMed ID: 38965160)
1. Monodispersed mesoscopic star-shaped gold particles via silver-ion-assisted multi-directional growth for highly sensitive SERS-active substrates. Kim S; Yoo S; Nam DH; Kim H; Hafner JH; Lee S Nano Converg; 2024 Jul; 11(1):26. PubMed ID: 38965160 [TBL] [Abstract][Full Text] [Related]
2. Surface-enhanced Raman scattering: realization of localized surface plasmon resonance using unique substrates and methods. Hossain MK; Kitahama Y; Huang GG; Han X; Ozaki Y Anal Bioanal Chem; 2009 Aug; 394(7):1747-60. PubMed ID: 19384546 [TBL] [Abstract][Full Text] [Related]
3. Facile One-Pot Synthesis of Nanodot-Decorated Gold-Silver Alloy Nanoboxes for Single-Particle Surface-Enhanced Raman Scattering Activity. Li J; Zhang G; Wang J; Maksymov IS; Greentree AD; Hu J; Shen A; Wang Y; Trau M ACS Appl Mater Interfaces; 2018 Sep; 10(38):32526-32535. PubMed ID: 30168708 [TBL] [Abstract][Full Text] [Related]
4. Differences between surfactant-free Au@Ag and CTAB-stabilized Au@Ag star-like nanoparticles in the preparation of nanoarrays to improve their surface-enhanced Raman scattering (SERS) performance. Van Vu S; Nguyen AT; Cao Tran AT; Thi Le VH; Lo TNH; Ho TH; Pham NNT; Park I; Vo KQ Nanoscale Adv; 2023 Oct; 5(20):5543-5561. PubMed ID: 37822906 [TBL] [Abstract][Full Text] [Related]
5. NIR-Active Plasmonic Gold Nanocapsules Synthesized Using Thermally Induced Seed Twinning for Surface-Enhanced Raman Scattering Applications. Singh P; König TAF; Jaiswal A ACS Appl Mater Interfaces; 2018 Nov; 10(45):39380-39390. PubMed ID: 30345737 [TBL] [Abstract][Full Text] [Related]
6. Facile tuning of tip sharpness on gold nanostars by the controlled seed-growth method and coating with a silver shell for detection of thiram using surface enhanced Raman spectroscopy (SERS). Quang ATN; Nguyen TA; Vu SV; Lo TNH; Park I; Vo KQ RSC Adv; 2022 Aug; 12(35):22815-22825. PubMed ID: 36105964 [TBL] [Abstract][Full Text] [Related]
7. Tailoring surface plasmons of high-density gold nanostar assemblies on metal films for surface-enhanced Raman spectroscopy. Lee J; Hua B; Park S; Ha M; Lee Y; Fan Z; Ko H Nanoscale; 2014 Jan; 6(1):616-23. PubMed ID: 24247586 [TBL] [Abstract][Full Text] [Related]
8. Plasmonic Nanogap-Enhanced Raman Scattering with Nanoparticles. Nam JM; Oh JW; Lee H; Suh YD Acc Chem Res; 2016 Dec; 49(12):2746-2755. PubMed ID: 27993009 [TBL] [Abstract][Full Text] [Related]
9. Tip-Selective Growth of Silver on Gold Nanostars for Surface-Enhanced Raman Scattering. Zhang W; Liu J; Niu W; Yan H; Lu X; Liu B ACS Appl Mater Interfaces; 2018 May; 10(17):14850-14856. PubMed ID: 29569899 [TBL] [Abstract][Full Text] [Related]
11. Bimetallic gold-silver nanoplate array as a highly active SERS substrate for detection of streptavidin/biotin assemblies. Bi L; Dong J; Xie W; Lu W; Tong W; Tao L; Qian W Anal Chim Acta; 2013 Dec; 805():95-100. PubMed ID: 24296148 [TBL] [Abstract][Full Text] [Related]
12. Gold Nanorod Assemblies: The Roles of Hot-Spot Positioning and Anisotropy in Plasmon Coupling and SERS. Dey P; Baumann V; Rodríguez-Fernández J Nanomaterials (Basel); 2020 May; 10(5):. PubMed ID: 32423172 [TBL] [Abstract][Full Text] [Related]
13. Hot spots in different metal nanostructures for plasmon-enhanced Raman spectroscopy. Wei H; Xu H Nanoscale; 2013 Nov; 5(22):10794-805. PubMed ID: 24113688 [TBL] [Abstract][Full Text] [Related]
14. Fabrication of gold nanoparticle-embedded metal-organic framework for highly sensitive surface-enhanced Raman scattering detection. Hu Y; Liao J; Wang D; Li G Anal Chem; 2014 Apr; 86(8):3955-63. PubMed ID: 24646316 [TBL] [Abstract][Full Text] [Related]
15. Silver overlayer-modified surface-enhanced Raman scattering-active gold substrates for potential applications in trace detection of biochemical species. Ou KL; Hsu TC; Liu YC; Yang KH; Tsai HY Anal Chim Acta; 2014 Jan; 806():188-96. PubMed ID: 24331055 [TBL] [Abstract][Full Text] [Related]
16. Prospects for plasmonic hot spots in single molecule SERS towards the chemical imaging of live cells. Radziuk D; Moehwald H Phys Chem Chem Phys; 2015 Sep; 17(33):21072-93. PubMed ID: 25619814 [TBL] [Abstract][Full Text] [Related]
17. Hollow Porous Gold Nanoshells with Controlled Nanojunctions for Highly Tunable Plasmon Resonances and Intense Field Enhancements for Surface-Enhanced Raman Scattering. Jeong S; Kim MW; Jo YR; Kim NY; Kang D; Lee SY; Yim SY; Kim BJ; Kim JH ACS Appl Mater Interfaces; 2019 Nov; 11(47):44458-44465. PubMed ID: 31718128 [TBL] [Abstract][Full Text] [Related]
18. Layer-by-layer assembly of Ag nanowires into 3D woodpile-like structures to achieve high density "hot spots" for surface-enhanced Raman scattering. Chen M; Phang IY; Lee MR; Yang JK; Ling XY Langmuir; 2013 Jun; 29(23):7061-9. PubMed ID: 23706081 [TBL] [Abstract][Full Text] [Related]
19. The Rise of Structurally Anisotropic Plasmonic Janus Gold Nanostars. Singh P; Kundu K; Seçkin S; Bhardwaj K; König TAF; Jaiswal A Chemistry; 2023 Oct; 29(57):e202302100. PubMed ID: 37461223 [TBL] [Abstract][Full Text] [Related]
20. 3D aluminum/silver hierarchical nanostructure with large areas of dense hot spots for surface-enhanced raman scattering. Zhao N; Li H; Xie Y; Feng Z; Wang Z; Yang Z; Yan X; Wang W; Tian C; Yu H Electrophoresis; 2019 Dec; 40(23-24):3123-3131. PubMed ID: 31576580 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]