These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
159 related articles for article (PubMed ID: 38965282)
1. Venom gland organogenesis in the common house spider. Hassan A; Blakeley G; McGregor AP; Zancolli G Sci Rep; 2024 Jul; 14(1):15379. PubMed ID: 38965282 [TBL] [Abstract][Full Text] [Related]
2. Venom apparatus of the Brazilian tarantula Vitalius dubius Mello-Leitão 1923 (Theraphosidae). Rocha-e-Silva TA; Collares-Buzato CB; da Cruz-Höfling MA; Hyslop S Cell Tissue Res; 2009 Mar; 335(3):617-29. PubMed ID: 19132396 [TBL] [Abstract][Full Text] [Related]
3. Developmental biology of the Brazilian 'Armed' spider Phoneutria nigriventer (Keyserling, 1891): microanatomical and molecular analysis of the embryonic stages. Silva LM; Fortes-Dias CL; Schaffert PP; Botelho AC; Nacif-Pimenta R; Estevão-Costa MI; Cordeiro Mdo N; Paolucci Pimenta PF Toxicon; 2011 Jan; 57(1):19-27. PubMed ID: 20950639 [TBL] [Abstract][Full Text] [Related]
4. Identification and characterization of toxins in the venom gland of the Chinese bird spider, Haplopelma hainanum, by transcriptomic analysis. Cheng TC; Long RW; Wu YQ; Guo YB; Liu DL; Peng L; Li DQ; Yang DW; Xu X; Liu FX; Xia QY Insect Sci; 2016 Jun; 23(3):487-99. PubMed ID: 26678257 [TBL] [Abstract][Full Text] [Related]
5. Immunocytochemical localization and secretion process of the toxin CSTX-1 in the venom gland of the wandering spider Cupiennius salei (Araneae: Ctenidae). Malli H; Kuhn-Nentwig L; Imboden H; Moon MJ; Wyler T Cell Tissue Res; 2000 Mar; 299(3):417-26. PubMed ID: 10772256 [TBL] [Abstract][Full Text] [Related]
6. House spider genome uncovers evolutionary shifts in the diversity and expression of black widow venom proteins associated with extreme toxicity. Gendreau KL; Haney RA; Schwager EE; Wierschin T; Stanke M; Richards S; Garb JE BMC Genomics; 2017 Feb; 18(1):178. PubMed ID: 28209133 [TBL] [Abstract][Full Text] [Related]
7. The deep-rooted origin of disulfide-rich spider venom toxins. Shaikh NY; Sunagar K Elife; 2023 Feb; 12():. PubMed ID: 36757362 [TBL] [Abstract][Full Text] [Related]
8. Morphological Analysis Reveals a Compartmentalized Duct in the Venom Apparatus of the Wasp Spider ( Schmidtberg H; von Reumont BM; Lemke S; Vilcinskas A; Lüddecke T Toxins (Basel); 2021 Apr; 13(4):. PubMed ID: 33918654 [TBL] [Abstract][Full Text] [Related]
9. Genomic and transcriptomic analyses support a silk gland origin of spider venom glands. Zhu B; Jin P; Zhang Y; Shen Y; Wang W; Li S BMC Biol; 2023 Apr; 21(1):82. PubMed ID: 37055766 [TBL] [Abstract][Full Text] [Related]
10. Color development upon reaction of ferric ion with the toxin JSTX, a glutamate receptor blocker present in the venom gland of the spider Nephila clavata (Joro spider). Yoshioka M; Narai N; Pan-Hou H; Shimazaki K; Miwa A; Kawai N Toxicon; 1988; 26(4):414-6. PubMed ID: 2841774 [TBL] [Abstract][Full Text] [Related]
11. Transcriptomic Analysis of the Spider Venom Gland Reveals Venom Diversity and Species Consanguinity. Hu Z; Chen B; Xiao Z; Zhou X; Liu Z Toxins (Basel); 2019 Jan; 11(2):. PubMed ID: 30682870 [No Abstract] [Full Text] [Related]
12. Effects of Gene Duplication, Positive Selection, and Shifts in Gene Expression on the Evolution of the Venom Gland Transcriptome in Widow Spiders. Haney RA; Clarke TH; Gadgil R; Fitzpatrick R; Hayashi CY; Ayoub NA; Garb JE Genome Biol Evol; 2016 Jan; 8(1):228-42. PubMed ID: 26733576 [TBL] [Abstract][Full Text] [Related]
13. A trade-off in evolution: the adaptive landscape of spiders without venom glands. Zhang Y; Shen Y; Jin P; Zhu B; Lin Y; Jiang T; Huang X; Wang Y; Zhao Z; Li S Gigascience; 2024 Jan; 13():. PubMed ID: 39101784 [TBL] [Abstract][Full Text] [Related]
14. The embryonic origin of the ampullate silk glands of the spider Cupiennius salei. Hilbrant M; Damen WG Arthropod Struct Dev; 2015 May; 44(3):280-8. PubMed ID: 25882741 [TBL] [Abstract][Full Text] [Related]
15. Transcriptome analysis of the venom glands of the Chinese wolf spider Lycosa singoriensis. Zhang Y; Chen J; Tang X; Wang F; Jiang L; Xiong X; Wang M; Rong M; Liu Z; Liang S Zoology (Jena); 2010 Jan; 113(1):10-8. PubMed ID: 19875276 [TBL] [Abstract][Full Text] [Related]
16. Identification of proteases in the extract of venom glands from brown spiders. da Silveira RB; dos Santos Filho JF; Mangili OC; Veiga SS; Gremski W; Nader HB; von Dietrich CP Toxicon; 2002 Jun; 40(6):815-22. PubMed ID: 12175619 [TBL] [Abstract][Full Text] [Related]
17. Structural analysis of the venom glands of the armed spider Phoneutria nigriventer (Keyserling, 1891): microanatomy, fine structure and confocal observations. Silva LM; Botelho AC; Nacif-Pimenta R; Martins GF; Alves LC; Brayner FA; Fortes-Dias CL; Pimenta PF Toxicon; 2008 Mar; 51(4):693-706. PubMed ID: 18241905 [TBL] [Abstract][Full Text] [Related]
18. Neurotoxins in the venom gland of Calommata signata, a burrowing spider. Han Q; Huang L; Li J; Wang Z; Gao H; Yang Z; Zhou Z; Liu Z Comp Biochem Physiol Part D Genomics Proteomics; 2021 Dec; 40():100871. PubMed ID: 34315107 [TBL] [Abstract][Full Text] [Related]
19. Transcriptome analysis of venom glands from a single fishing spider Dolomedes mizhoanus. Jiang L; Liu C; Duan Z; Deng M; Tang X; Liang S Toxicon; 2013 Oct; 73():23-32. PubMed ID: 23851222 [TBL] [Abstract][Full Text] [Related]
20. Comprehensive analysis of the venom gland transcriptome of the spider Dolomedes fimbriatus. Kozlov SA; Lazarev VN; Kostryukova ES; Selezneva OV; Ospanova EA; Alexeev DG; Govorun VM; Grishin EV Sci Data; 2014; 1():140023. PubMed ID: 25977780 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]