These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

119 related articles for article (PubMed ID: 38965504)

  • 1. Natural variation in yeast reveals multiple paths for acquiring higher stress resistance.
    Scholes AN; Stuecker TN; Hood SE; Locke CJ; Stacy CL; Zhang Q; Lewis JA
    BMC Biol; 2024 Jul; 22(1):149. PubMed ID: 38965504
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Linkage mapping of yeast cross protection connects gene expression variation to a higher-order organismal trait.
    Stuecker TN; Scholes AN; Lewis JA
    PLoS Genet; 2018 Apr; 14(4):e1007335. PubMed ID: 29649251
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Independent Mechanisms for Acquired Salt Tolerance versus Growth Resumption Induced by Mild Ethanol Pretreatment in
    McDaniel EA; Stuecker TN; Veluvolu M; Gasch AP; Lewis JA
    mSphere; 2018 Nov; 3(6):. PubMed ID: 30487155
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Catalase activity is stimulated by H(2)O(2) in rich culture medium and is required for H(2)O(2) resistance and adaptation in yeast.
    Martins D; English AM
    Redox Biol; 2014; 2():308-13. PubMed ID: 24563848
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Vacuolar H+-ATPase Protects Saccharomyces cerevisiae Cells against Ethanol-Induced Oxidative and Cell Wall Stresses.
    Charoenbhakdi S; Dokpikul T; Burphan T; Techo T; Auesukaree C
    Appl Environ Microbiol; 2016 May; 82(10):3121-3130. PubMed ID: 26994074
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Genome-wide identification of genes involved in tolerance to various environmental stresses in Saccharomyces cerevisiae.
    Auesukaree C; Damnernsawad A; Kruatrachue M; Pokethitiyook P; Boonchird C; Kaneko Y; Harashima S
    J Appl Genet; 2009; 50(3):301-10. PubMed ID: 19638689
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Stress Tolerance Variations in Saccharomyces cerevisiae Strains from Diverse Ecological Sources and Geographical Locations.
    Zheng YL; Wang SA
    PLoS One; 2015; 10(8):e0133889. PubMed ID: 26244846
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Oxidative stress tolerance of a spore clone isolated from Shirakami kodama yeast depends on altered regulation of Msn2 leading to enhanced expression of ROS-degrading enzymes.
    Nakazawa N; Yanata H; Ito N; Kaneta E; Takahashi K
    J Gen Appl Microbiol; 2018 Sep; 64(4):149-157. PubMed ID: 29607878
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cellular memory of acquired stress resistance in Saccharomyces cerevisiae.
    Guan Q; Haroon S; Bravo DG; Will JL; Gasch AP
    Genetics; 2012 Oct; 192(2):495-505. PubMed ID: 22851651
    [TBL] [Abstract][Full Text] [Related]  

  • 10.
    Chen YQ; Liu XG; Zhao W; Cui H; Ruan J; Yuan Y; Tu Z
    Biomed Res Int; 2017; 2017():7587395. PubMed ID: 28828388
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Rice ASR1 protein with reactive oxygen species scavenging and chaperone-like activities enhances acquired tolerance to abiotic stresses in Saccharomyces cerevisiae.
    Kim IS; Kim YS; Yoon HS
    Mol Cells; 2012 Mar; 33(3):285-93. PubMed ID: 22382682
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Relationship between ethanol and oxidative stress in laboratory and brewing yeast strains.
    Bleoanca I; Silva AR; Pimentel C; Rodrigues-Pousada C; Menezes Rde A
    J Biosci Bioeng; 2013 Dec; 116(6):697-705. PubMed ID: 23838012
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The HOG pathway controls osmotic regulation of transcription via the stress response element (STRE) of the Saccharomyces cerevisiae CTT1 gene.
    Schüller C; Brewster JL; Alexander MR; Gustin MC; Ruis H
    EMBO J; 1994 Sep; 13(18):4382-9. PubMed ID: 7523111
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mitochondrial Superoxide Dismutase and Yap1p Act as a Signaling Module Contributing to Ethanol Tolerance of the Yeast Saccharomyces cerevisiae.
    Zyrina AN; Smirnova EA; Markova OV; Severin FF; Knorre DA
    Appl Environ Microbiol; 2017 Feb; 83(3):. PubMed ID: 27864171
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Molecular mechanisms of the yeast adaptive response and tolerance to stresses encountered during ethanol fermentation.
    Auesukaree C
    J Biosci Bioeng; 2017 Aug; 124(2):133-142. PubMed ID: 28427825
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Unveiling the super tolerance of
    Qi Y; Qin Q; Liao G; Tong L; Jin C; Wang B; Fang W
    Microbiol Spectr; 2024 Feb; 12(2):e0316923. PubMed ID: 38206032
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Tolerance to Oxidative Stress in Budding Yeast by Heterologous Expression of Catalases A and T from Debaryomyces hansenii.
    González J; Castillo R; García-Campos MA; Noriega-Samaniego D; Escobar-Sánchez V; Romero-Aguilar L; Alba-Lois L; Segal-Kischinevzky C
    Curr Microbiol; 2020 Dec; 77(12):4000-4015. PubMed ID: 33064189
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The role of cytoplasmic catalase in dehydration tolerance of Saccharomyces cerevisiae.
    França MB; Panek AD; Eleutherio EC
    Cell Stress Chaperones; 2005; 10(3):167-70. PubMed ID: 16184761
    [TBL] [Abstract][Full Text] [Related]  

  • 19. N-Acetyltransferase Mpr1 confers ethanol tolerance on Saccharomyces cerevisiae by reducing reactive oxygen species.
    Du X; Takagi H
    Appl Microbiol Biotechnol; 2007 Jul; 75(6):1343-51. PubMed ID: 17387467
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Genetic architecture of ethanol-responsive transcriptome variation in Saccharomyces cerevisiae strains.
    Lewis JA; Broman AT; Will J; Gasch AP
    Genetics; 2014 Sep; 198(1):369-82. PubMed ID: 24970865
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.