These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

125 related articles for article (PubMed ID: 38966380)

  • 1. A strategy for the controllable generation of organic superbases from benchtop-stable salts.
    Sujansky SJ; Hoteling GA; Bandar JS
    Chem Sci; 2024 Jul; 15(26):10018-10026. PubMed ID: 38966380
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Organic Superbases in Recent Synthetic Methodology Research.
    Puleo TR; Sujansky SJ; Wright SE; Bandar JS
    Chemistry; 2021 Mar; 27(13):4216-4229. PubMed ID: 32841442
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Design of Novel Uncharged Organic Superbases: Merging Basicity and Functionality.
    Vazdar K; Margetić D; Kovačević B; Sundermeyer J; Leito I; Jahn U
    Acc Chem Res; 2021 Aug; 54(15):3108-3123. PubMed ID: 34308625
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Stable Singlet Carbenes as Organic Superbases.
    Vermersch F; Yazdani S; Junor GP; Grotjahn DB; Jazzar R; Bertrand G
    Angew Chem Int Ed Engl; 2021 Dec; 60(52):27253-27257. PubMed ID: 34729888
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Bicyclic guanidine superbase carboxylate salts for cellulose dissolution.
    Gazagnaire E; Helminen J; King AWT; Golin Almeida T; Kurten T; Kilpeläinen I
    RSC Adv; 2024 Apr; 14(17):12119-12124. PubMed ID: 38628473
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Compact Rotaxane Superbases.
    Power MJ; Morris DTJ; Vitorica-Yrezabal IJ; Leigh DA
    J Am Chem Soc; 2023 Apr; 145(15):8593-9. PubMed ID: 37039157
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Novel Organic Superbase Dopants for Ultraefficient N-Doping of Organic Semiconductors.
    Wei H; Cheng Z; Wu T; Liu Y; Guo J; Chen PA; Xia J; Xie H; Qiu X; Liu T; Zhang B; Hui J; Zeng Z; Bai Y; Hu Y
    Adv Mater; 2023 Jun; 35(22):e2300084. PubMed ID: 36929089
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Experimental gas-phase basicity scale of superbasic phosphazenes.
    Kaljurand I; Koppel IA; Kütt A; Rõõm EI; Rodima T; Koppel I; Mishima M; Leito I
    J Phys Chem A; 2007 Feb; 111(7):1245-50. PubMed ID: 17266288
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Guanidinophosphazenes: design, synthesis, and basicity in THF and in the gas phase.
    Kolomeitsev AA; Koppel IA; Rodima T; Barten J; Lork E; Röschenthaler GV; Kaljurand I; Kütt A; Koppel I; Mäemets V; Leito I
    J Am Chem Soc; 2005 Dec; 127(50):17656-66. PubMed ID: 16351095
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Experimental Basicities of Superbasic Phosphonium Ylides and Phosphazenes.
    Saame J; Rodima T; Tshepelevitsh S; Kütt A; Kaljurand I; Haljasorg T; Koppel IA; Leito I
    J Org Chem; 2016 Sep; 81(17):7349-61. PubMed ID: 27392255
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Phosphorus-Containing Superbases: Recent Progress in the Chemistry of Electron-Abundant Phosphines and Phosphazenes.
    Weitkamp RF; Neumann B; Stammler HG; Hoge B
    Chemistry; 2021 Jul; 27(42):10807-10825. PubMed ID: 34032319
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Palladium-catalyzed cross-coupling reactions of organosilanols and their salts: practical alternatives to boron- and tin-based methods.
    Denmark SE; Regens CS
    Acc Chem Res; 2008 Nov; 41(11):1486-99. PubMed ID: 18681465
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Chelating P2-Bis-phosphazenes with a (R,R)-1,2-Diaminocyclohexane Skeleton: Two New Chiral Superbases.
    Kögel JF; Kovačević B; Ullrich S; Xie X; Sundermeyer J
    Chemistry; 2017 Feb; 23(11):2591-2598. PubMed ID: 28128480
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Lewis pair polymerization by classical and frustrated Lewis pairs: acid, base and monomer scope and polymerization mechanism.
    Zhang Y; Miyake GM; John MG; Falivene L; Caporaso L; Cavallo L; Chen EY
    Dalton Trans; 2012 Aug; 41(30):9119-34. PubMed ID: 22614678
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Experimental Basicities of Phosphazene, Guanidinophosphazene, and Proton Sponge Superbases in the Gas Phase and Solution.
    Kaljurand I; Saame J; Rodima T; Koppel I; Koppel IA; Kögel JF; Sundermeyer J; Köhn U; Coles MP; Leito I
    J Phys Chem A; 2016 Apr; 120(16):2591-604. PubMed ID: 27093092
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Utilizing the Azaazulene Scaffolds in the Design of New Organic Superbases.
    Barić D
    ACS Omega; 2019 Sep; 4(12):15197-15207. PubMed ID: 31552365
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Benchtop Nickel Catalysis Invigorated by Electron-Deficient Diene Ligands.
    Rubel CZ; He WJ; Wisniewski SR; Engle KM
    Acc Chem Res; 2024 Feb; 57(3):312-326. PubMed ID: 38236260
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Higher-Order Cyclopropenimine Superbases: Direct Neutral Brønsted Base Catalyzed Michael Reactions with α-Aryl Esters.
    Nacsa ED; Lambert TH
    J Am Chem Soc; 2015 Aug; 137(32):10246-53. PubMed ID: 26131761
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Highly Efficient Darzens Reactions Mediated by Phosphazene Bases under Mild Conditions.
    Lops C; Pengo P; Pasquato L
    ChemistryOpen; 2022 Oct; 11(10):e202200179. PubMed ID: 36207800
    [TBL] [Abstract][Full Text] [Related]  

  • 20. P2Et Phosphazene: A Mild, Functional Group Tolerant Base for Soluble, Room Temperature Pd-Catalyzed C-N, C-O, and C-C Cross-Coupling Reactions.
    Buitrago Santanilla A; Christensen M; Campeau LC; Davies IW; Dreher SD
    Org Lett; 2015 Jul; 17(13):3370-3. PubMed ID: 26099020
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.