These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

112 related articles for article (PubMed ID: 38966757)

  • 1. Composing recurrent spiking neural networks using locally-recurrent motifs and risk-mitigating architectural optimization.
    Zhang W; Geng H; Li P
    Front Neurosci; 2024; 18():1412559. PubMed ID: 38966757
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Skip-Connected Self-Recurrent Spiking Neural Networks With Joint Intrinsic Parameter and Synaptic Weight Training.
    Zhang W; Li P
    Neural Comput; 2021 Jun; 33(7):1886-1913. PubMed ID: 34411267
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Adaptive structure evolution and biologically plausible synaptic plasticity for recurrent spiking neural networks.
    Pan W; Zhao F; Zeng Y; Han B
    Sci Rep; 2023 Oct; 13(1):16924. PubMed ID: 37805632
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Heterogeneous recurrent spiking neural network for spatio-temporal classification.
    Chakraborty B; Mukhopadhyay S
    Front Neurosci; 2023; 17():994517. PubMed ID: 36793542
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Target spike patterns enable efficient and biologically plausible learning for complex temporal tasks.
    Muratore P; Capone C; Paolucci PS
    PLoS One; 2021; 16(2):e0247014. PubMed ID: 33592040
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Optimizing Deeper Spiking Neural Networks for Dynamic Vision Sensing.
    Kim Y; Panda P
    Neural Netw; 2021 Dec; 144():686-698. PubMed ID: 34662827
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Presynaptic spike-driven plasticity based on eligibility trace for on-chip learning system.
    Gao T; Deng B; Wang J; Yi G
    Front Neurosci; 2023; 17():1107089. PubMed ID: 36908804
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Understanding the Impact of Neural Variations and Random Connections on Inference.
    Zeng Y; Ferdous ZI; Zhang W; Xu M; Yu A; Patel D; Post V; Guo X; Berdichevsky Y; Yan Z
    Front Comput Neurosci; 2021; 15():612937. PubMed ID: 34163343
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Brain-inspired neural circuit evolution for spiking neural networks.
    Shen G; Zhao D; Dong Y; Zeng Y
    Proc Natl Acad Sci U S A; 2023 Sep; 120(39):e2218173120. PubMed ID: 37729206
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Initialization and self-organized optimization of recurrent neural network connectivity.
    Boedecker J; Obst O; Mayer NM; Asada M
    HFSP J; 2009 Oct; 3(5):340-9. PubMed ID: 20357891
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Efficient spiking neural network design via neural architecture search.
    Yan J; Liu Q; Zhang M; Feng L; Ma D; Li H; Pan G
    Neural Netw; 2024 May; 173():106172. PubMed ID: 38402808
    [TBL] [Abstract][Full Text] [Related]  

  • 12. An unsupervised STDP-based spiking neural network inspired by biologically plausible learning rules and connections.
    Dong Y; Zhao D; Li Y; Zeng Y
    Neural Netw; 2023 Aug; 165():799-808. PubMed ID: 37418862
    [TBL] [Abstract][Full Text] [Related]  

  • 13. An adaptive threshold neuron for recurrent spiking neural networks with nanodevice hardware implementation.
    Shaban A; Bezugam SS; Suri M
    Nat Commun; 2021 Jul; 12(1):4234. PubMed ID: 34244491
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Temporal Coding in Spiking Neural Networks With Alpha Synaptic Function: Learning With Backpropagation.
    Comsa IM; Potempa K; Versari L; Fischbacher T; Gesmundo A; Alakuijala J
    IEEE Trans Neural Netw Learn Syst; 2022 Oct; 33(10):5939-5952. PubMed ID: 33900924
    [TBL] [Abstract][Full Text] [Related]  

  • 15. An Event-Driven Classifier for Spiking Neural Networks Fed with Synthetic or Dynamic Vision Sensor Data.
    Stromatias E; Soto M; Serrano-Gotarredona T; Linares-Barranco B
    Front Neurosci; 2017; 11():350. PubMed ID: 28701911
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Neuronal-Plasticity and Reward-Propagation Improved Recurrent Spiking Neural Networks.
    Jia S; Zhang T; Cheng X; Liu H; Xu B
    Front Neurosci; 2021; 15():654786. PubMed ID: 33776644
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Introducing principles of synaptic integration in the optimization of deep neural networks.
    Dellaferrera G; Woźniak S; Indiveri G; Pantazi A; Eleftheriou E
    Nat Commun; 2022 Apr; 13(1):1885. PubMed ID: 35393422
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Biologically plausible deep learning - But how far can we go with shallow networks?
    Illing B; Gerstner W; Brea J
    Neural Netw; 2019 Oct; 118():90-101. PubMed ID: 31254771
    [TBL] [Abstract][Full Text] [Related]  

  • 19. ALBSNN: ultra-low latency adaptive local binary spiking neural network with accuracy loss estimator.
    Pei Y; Xu C; Wu Z; Liu Y; Yang Y
    Front Neurosci; 2023; 17():1225871. PubMed ID: 37771337
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Explaining cocktail party effect and McGurk effect with a spiking neural network improved by Motif-topology.
    Jia S; Zhang T; Zuo R; Xu B
    Front Neurosci; 2023; 17():1132269. PubMed ID: 37021133
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.