These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

115 related articles for article (PubMed ID: 38966759)

  • 41. Surrogate gradients for analog neuromorphic computing.
    Cramer B; Billaudelle S; Kanya S; Leibfried A; Grübl A; Karasenko V; Pehle C; Schreiber K; Stradmann Y; Weis J; Schemmel J; Zenke F
    Proc Natl Acad Sci U S A; 2022 Jan; 119(4):. PubMed ID: 35042792
    [TBL] [Abstract][Full Text] [Related]  

  • 42. The NEST Dry-Run Mode: Efficient Dynamic Analysis of Neuronal Network Simulation Code.
    Kunkel S; Schenck W
    Front Neuroinform; 2017; 11():40. PubMed ID: 28701946
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Exploring the Connection Between Binary and Spiking Neural Networks.
    Lu S; Sengupta A
    Front Neurosci; 2020; 14():535. PubMed ID: 32670002
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Deep convolutional neural network and IoT technology for healthcare.
    Wassan S; Dongyan H; Suhail B; Jhanjhi NZ; Xiao G; Ahmed S; Murugesan RK
    Digit Health; 2024; 10():20552076231220123. PubMed ID: 38250147
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Real-time simulation of a spiking neural network model of the basal ganglia circuitry using general purpose computing on graphics processing units.
    Igarashi J; Shouno O; Fukai T; Tsujino H
    Neural Netw; 2011 Nov; 24(9):950-60. PubMed ID: 21764258
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Benchmarking Highly Parallel Hardware for Spiking Neural Networks in Robotics.
    Steffen L; Koch R; Ulbrich S; Nitzsche S; Roennau A; Dillmann R
    Front Neurosci; 2021; 15():667011. PubMed ID: 34267622
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Extremely Scalable Spiking Neuronal Network Simulation Code: From Laptops to Exascale Computers.
    Jordan J; Ippen T; Helias M; Kitayama I; Sato M; Igarashi J; Diesmann M; Kunkel S
    Front Neuroinform; 2018; 12():2. PubMed ID: 29503613
    [TBL] [Abstract][Full Text] [Related]  

  • 48. TTQR: A Traffic- and Thermal-Aware Q-Routing for 3D Network-on-Chip.
    Liu H; Chen X; Zhao Y; Li C; Lu J
    Sensors (Basel); 2022 Nov; 22(22):. PubMed ID: 36433316
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Six networks on a universal neuromorphic computing substrate.
    Pfeil T; Grübl A; Jeltsch S; Müller E; Müller P; Petrovici MA; Schmuker M; Brüderle D; Schemmel J; Meier K
    Front Neurosci; 2013; 7():11. PubMed ID: 23423583
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Large-Scale Simulation of a Layered Cortical Sheet of Spiking Network Model Using a Tile Partitioning Method.
    Igarashi J; Yamaura H; Yamazaki T
    Front Neuroinform; 2019; 13():71. PubMed ID: 31849631
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Proceedings of the Second Workshop on Theory meets Industry (Erwin-Schrödinger-Institute (ESI), Vienna, Austria, 12-14 June 2007).
    Hafner J
    J Phys Condens Matter; 2008 Feb; 20(6):060301. PubMed ID: 21693862
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Comparing Neuromorphic Solutions in Action: Implementing a Bio-Inspired Solution to a Benchmark Classification Task on Three Parallel-Computing Platforms.
    Diamond A; Nowotny T; Schmuker M
    Front Neurosci; 2015; 9():491. PubMed ID: 26778950
    [TBL] [Abstract][Full Text] [Related]  

  • 53. NeuroFlow: A General Purpose Spiking Neural Network Simulation Platform using Customizable Processors.
    Cheung K; Schultz SR; Luk W
    Front Neurosci; 2015; 9():516. PubMed ID: 26834542
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Methodological and conceptual issues regarding occupational psychosocial coronary heart disease epidemiology.
    Burr H; Formazin M; Pohrt A
    Scand J Work Environ Health; 2016 May; 42(3):251-5. PubMed ID: 26960179
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Advancements and Challenges in IoT Simulators: A Comprehensive Review.
    Almutairi R; Bergami G; Morgan G
    Sensors (Basel); 2024 Feb; 24(5):. PubMed ID: 38475047
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Toward Robust Cognitive 3D Brain-Inspired Cross-Paradigm System.
    Ben Abdallah A; Dang KN
    Front Neurosci; 2021; 15():690208. PubMed ID: 34248491
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Towards a Scalable Software Defined Network-on-Chip for Next Generation Cloud.
    Scionti A; Mazumdar S; Portero A
    Sensors (Basel); 2018 Jul; 18(7):. PubMed ID: 30021975
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Designing area optimized application-specific network-on-chip architectures while providing hard QoS guarantees.
    Khawaja SG; Mushtaq MH; Khan SA; Akram MU; Jamal HU
    PLoS One; 2015; 10(4):e0125230. PubMed ID: 25898016
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Packet traffic analysis of scale-free networks for large-scale network-on-chip design.
    Oshida N; Ihara S
    Phys Rev E Stat Nonlin Soft Matter Phys; 2006 Aug; 74(2 Pt 2):026115. PubMed ID: 17025511
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Optimal Mapping of Spiking Neural Network to Neuromorphic Hardware for Edge-AI.
    Xiao C; Chen J; Wang L
    Sensors (Basel); 2022 Sep; 22(19):. PubMed ID: 36236344
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.