These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

146 related articles for article (PubMed ID: 38966879)

  • 1. Hollow Nanoreactors Unlock New Possibilities for Persulfate-Based Advanced Oxidation Processes.
    Wang K; Wang R; Zhang S; Wang M; He Z; Chen H; Ho SH
    Small; 2024 Jul; ():e2401796. PubMed ID: 38966879
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Kinetics Driven by Hollow Nanoreactors: An Opportunity for Controllable Catalysis.
    Yu Z; Ji N; Li X; Zhang R; Qiao Y; Xiong J; Liu J; Lu X
    Angew Chem Int Ed Engl; 2023 Jan; 62(3):e202213612. PubMed ID: 36346146
    [TBL] [Abstract][Full Text] [Related]  

  • 3. One-Step Construction of a Hollow Au@Bimetal-Organic Framework Core-Shell Catalytic Nanoreactor for Selective Alcohol Oxidation Reaction.
    Qin N; Pan A; Yuan J; Ke F; Wu X; Zhu J; Liu J; Zhu J
    ACS Appl Mater Interfaces; 2021 Mar; 13(10):12463-12471. PubMed ID: 33657796
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Hollow Carbon Sphere Nanoreactors Loaded with PdCu Nanoparticles: Void-Confinement Effects in Liquid-Phase Hydrogenations.
    Dong C; Yu Q; Ye RP; Su P; Liu J; Wang GH
    Angew Chem Int Ed Engl; 2020 Oct; 59(42):18374-18379. PubMed ID: 32588534
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Ruthenium-Nanoparticle-Loaded Hollow Carbon Spheres as Nanoreactors for Hydrogenation of Levulinic Acid: Explicitly Recognizing the Void-Confinement Effect.
    Yu Z; Ji N; Xiong J; Li X; Zhang R; Zhang L; Lu X
    Angew Chem Int Ed Engl; 2021 Sep; 60(38):20786-20794. PubMed ID: 34159675
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Design of Hollow Nanoreactors for Size- and Shape-Selective Catalytic Semihydrogenation Driven by Molecular Recognition.
    Pi Y; Cui L; Luo W; Li H; Ma Y; Ta N; Wang X; Gao R; Wang D; Yang Q; Liu J
    Angew Chem Int Ed Engl; 2023 Oct; 62(43):e202307096. PubMed ID: 37394778
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Hollow and Yolk-Shell Co-N-C@SiO
    Lan X; Ali B; Wang Y; Wang T
    ACS Appl Mater Interfaces; 2020 Jan; 12(3):3624-3630. PubMed ID: 31865695
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Construction of hollow mesoporous silica nanoreactors for enhanced photo-oxidations over Au-Pt catalysts.
    Tian H; Zhao J; Wang X; Wang L; Liu H; Wang G; Huang J; Liu J; Lu GQM
    Natl Sci Rev; 2020 Nov; 7(11):1647-1655. PubMed ID: 34691500
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mn-N-C Nanoreactor Prepared through Heating Metalloporphyrin Supported in Mesoporous Hollow Silica Spheres.
    Lin X; Fu L; Chen Y; Zhu R; Wang S; Liu Z
    ACS Appl Mater Interfaces; 2016 Oct; 8(40):26809-26816. PubMed ID: 27672699
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Layered double hydroxide based materials applied in persulfate based advanced oxidation processes: Property, mechanism, application and perspectives.
    Ge L; Shao B; Liang Q; Huang D; Liu Z; He Q; Wu T; Luo S; Pan Y; Zhao C; Huang J; Hu Y
    J Hazard Mater; 2022 Feb; 424(Pt C):127612. PubMed ID: 34838358
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Polyoxometalates encapsulated into hollow double-shelled nanospheres as amphiphilic nanoreactors for an effective oxidative desulfurization.
    Liu H; Li Z; Dong J; Liu D; Liu C; Chi Y; Hu C
    Nanoscale; 2020 Aug; 12(31):16586-16595. PubMed ID: 32749430
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Reactant enrichment in hollow void of Pt NPs@MnOx nanoreactors for boosting hydrogenation performance.
    Ma Y; Wang L; Zhao W; Liu T; Li H; Luo W; Jiang Q; Liu W; Yang Q; Huang J; Zhang R; Liu J; Lu GQM; Li C
    Natl Sci Rev; 2023 Oct; 10(10):nwad201. PubMed ID: 37671330
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Encapsulating stable perovskite catalysts in hollow nanoreactors for enhanced pollutants degradation.
    Yao X; Su X; Wang X; Hu X; Hong X
    J Colloid Interface Sci; 2024 Sep; 669():657-666. PubMed ID: 38733877
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The fabrication of hollow ZrO
    Yang F; Wu C; Yu H; Wang S; Li T; Yan B; Yin H
    Nanoscale; 2021 Apr; 13(14):6856-6862. PubMed ID: 33885486
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Hollow-shelled nanoreactors endowed with high catalytic activity.
    Pérez-Lorenzo M; Vaz B; Salgueiriño V; Correa-Duarte MA
    Chemistry; 2013 Sep; 19(37):12196-211. PubMed ID: 23946188
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Functionalization of Hollow Nanomaterials for Catalytic Applications: Nanoreactor Construction.
    Zhu W; Chen Z; Pan Y; Dai R; Wu Y; Zhuang Z; Wang D; Peng Q; Chen C; Li Y
    Adv Mater; 2019 Sep; 31(38):e1800426. PubMed ID: 30125990
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Nanoreactor-based catalytic systems for therapeutic applications: Principles, strategies, and challenges.
    Zhang D; Liu D; Wang C; Su Y; Zhang X
    Adv Colloid Interface Sci; 2023 Dec; 322():103037. PubMed ID: 37931381
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Tunable Hollow Nanoreactors for In Situ Synthesis of GeP Electrodes towards High-Performance Sodium Ion Batteries.
    Zeng T; He H; Guan H; Yuan R; Liu X; Zhang C
    Angew Chem Int Ed Engl; 2021 May; 60(21):12103-12108. PubMed ID: 33689206
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Magnetothermia-Induced Catalytic Hollow Nanoreactor for Bioorthogonal Organic Synthesis in Living Cells.
    Lee J; Dubbu S; Kumari N; Kumar A; Lim J; Kim S; Lee IS
    Nano Lett; 2020 Oct; 20(10):6981-6988. PubMed ID: 32633963
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Photothermally Triggered Nanoreactors with a Tunable Catalyst Location and Catalytic Activity.
    Xu X; Sarhan RM; Mei S; Kochovski Z; Koopman W; Priestley RD; Lu Y
    ACS Appl Mater Interfaces; 2023 Oct; 15(41):48623-48631. PubMed ID: 37807243
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.