These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
146 related articles for article (PubMed ID: 38966910)
41. Cheminformatics Analysis of Fluoroquinolones and their Inhibition Potency Against Four Pathogens. Borrel A; Melander C; Fourches D Mol Inform; 2021 May; 40(5):e2000215. PubMed ID: 33252197 [TBL] [Abstract][Full Text] [Related]
42. How safe are wild-caught salmons exposed to various industrial chemicals? First ever in silico models for salmon toxicity data gaps filling. Yang S; Kar S J Hazard Mater; 2024 Sep; 477():135401. PubMed ID: 39111177 [TBL] [Abstract][Full Text] [Related]
43. BCL::Mol2D-a robust atom environment descriptor for QSAR modeling and lead optimization. Vu O; Mendenhall J; Altarawy D; Meiler J J Comput Aided Mol Des; 2019 May; 33(5):477-486. PubMed ID: 30955193 [TBL] [Abstract][Full Text] [Related]
44. Mol2Context-vec: learning molecular representation from context awareness for drug discovery. Lv Q; Chen G; Zhao L; Zhong W; Yu-Chian Chen C Brief Bioinform; 2021 Nov; 22(6):. PubMed ID: 34428290 [TBL] [Abstract][Full Text] [Related]
45. First report on chemometric modeling of tilapia fish aquatic toxicity to organic chemicals: Toxicity data gap filling. Yang S; Kar S Sci Total Environ; 2024 Jan; 907():167991. PubMed ID: 37898216 [TBL] [Abstract][Full Text] [Related]
46. Entering the era of computationally driven drug development. Maharao N; Antontsev V; Wright M; Varshney J Drug Metab Rev; 2020 May; 52(2):283-298. PubMed ID: 32083960 [TBL] [Abstract][Full Text] [Related]
47. A Deep Learning-Based Quantitative Structure-Activity Relationship System Construct Prediction Model of Agonist and Antagonist with High Performance. Matsuzaka Y; Uesawa Y Int J Mol Sci; 2022 Feb; 23(4):. PubMed ID: 35216254 [TBL] [Abstract][Full Text] [Related]
48. Prediction of acute toxicity for Chlorella vulgaris caused by tire wear particle-derived compounds using quantitative structure-activity relationship models. Jiang JR; Cai WX; Chen ZF; Liao XL; Cai Z Water Res; 2024 Jun; 256():121643. PubMed ID: 38663211 [TBL] [Abstract][Full Text] [Related]
49. Cheminformatics to Characterize Pharmacologically Active Natural Products. Medina-Franco JL; Saldívar-González FI Biomolecules; 2020 Nov; 10(11):. PubMed ID: 33213003 [TBL] [Abstract][Full Text] [Related]
50. On the Misleading Use of Consonni V; Todeschini R; Ballabio D; Grisoni F Mol Inform; 2019 Jan; 38(1-2):e1800029. PubMed ID: 30142701 [TBL] [Abstract][Full Text] [Related]
51. Chemical Reactivity Prediction: Current Methods and Different Application Areas. Ertl P; Gerebtzoff G; Lewis R; Muenkler H; Schneider N; Sirockin F; Stiefl N; Tosco P Mol Inform; 2022 Jun; 41(6):e2100277. PubMed ID: 34964302 [TBL] [Abstract][Full Text] [Related]
52. Machine Learning in Drug Discovery and Development Part 1: A Primer. Talevi A; Morales JF; Hather G; Podichetty JT; Kim S; Bloomingdale PC; Kim S; Burton J; Brown JD; Winterstein AG; Schmidt S; White JK; Conrado DJ CPT Pharmacometrics Syst Pharmacol; 2020 Mar; 9(3):129-142. PubMed ID: 31905263 [TBL] [Abstract][Full Text] [Related]
53. Exploring the Chemical Space of CYP17A1 Inhibitors Using Cheminformatics and Machine Learning. Yu T; Huang T; Yu L; Nantasenamat C; Anuwongcharoen N; Piacham T; Ren R; Chiang YC Molecules; 2023 Feb; 28(4):. PubMed ID: 36838665 [TBL] [Abstract][Full Text] [Related]
54. Integrating QSAR modelling and deep learning in drug discovery: the emergence of deep QSAR. Tropsha A; Isayev O; Varnek A; Schneider G; Cherkasov A Nat Rev Drug Discov; 2024 Feb; 23(2):141-155. PubMed ID: 38066301 [TBL] [Abstract][Full Text] [Related]
55. Introduction to the BioChemical Library (BCL): An Application-Based Open-Source Toolkit for Integrated Cheminformatics and Machine Learning in Computer-Aided Drug Discovery. Brown BP; Vu O; Geanes AR; Kothiwale S; Butkiewicz M; Lowe EW; Mueller R; Pape R; Mendenhall J; Meiler J Front Pharmacol; 2022; 13():833099. PubMed ID: 35264967 [TBL] [Abstract][Full Text] [Related]
56. Computational prediction of drug-target interactions using chemogenomic approaches: an empirical survey. Ezzat A; Wu M; Li XL; Kwoh CK Brief Bioinform; 2019 Jul; 20(4):1337-1357. PubMed ID: 29377981 [TBL] [Abstract][Full Text] [Related]
58. Exploring the Role of Chemoinformatics in Accelerating Drug Discovery: A Computational Approach. Murali A; Panwar U; Singh SK Methods Mol Biol; 2024; 2714():203-213. PubMed ID: 37676601 [TBL] [Abstract][Full Text] [Related]
59. Molecular activity prediction by means of supervised subspace projection based ensembles of classifiers. Cerruela García G; García-Pedrajas N; Luque Ruiz I; Gómez-Nieto MÁ SAR QSAR Environ Res; 2018 Mar; 29(3):187-212. PubMed ID: 29390886 [TBL] [Abstract][Full Text] [Related]