These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

104 related articles for article (PubMed ID: 38966995)

  • 1. Nuclear F-actin assembly on damaged chromatin is regulated by DYRK1A and Spir1 phosphorylation.
    Li J; Xiong N; West KL; Leung M; Ching YP; Huang J; Yuan J; Yu CH; Leung J; Huen M
    Nucleic Acids Res; 2024 Jul; ():. PubMed ID: 38966995
    [TBL] [Abstract][Full Text] [Related]  

  • 2. DYRK1A regulates the recruitment of 53BP1 to the sites of DNA damage in part through interaction with RNF169.
    Menon VR; Ananthapadmanabhan V; Swanson S; Saini S; Sesay F; Yakovlev V; Florens L; DeCaprio JA; Washburn MP; Dozmorov M; Litovchick L
    Cell Cycle; 2019 Mar; 18(5):531-551. PubMed ID: 30773093
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mathematical model of chromosomal dynamics during DNA double strand break repair in budding yeast.
    Nakahata S; Komoto T; Fujii M; Awazu A
    Biophys Physicobiol; 2022; 19():1-12. PubMed ID: 35749629
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Patching Broken DNA: Nucleosome Dynamics and the Repair of DNA Breaks.
    Gursoy-Yuzugullu O; House N; Price BD
    J Mol Biol; 2016 May; 428(9 Pt B):1846-60. PubMed ID: 26625977
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Nuclear actin filaments in DNA repair dynamics.
    Caridi CP; Plessner M; Grosse R; Chiolo I
    Nat Cell Biol; 2019 Sep; 21(9):1068-1077. PubMed ID: 31481797
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Dyrk1A negatively regulates the actin cytoskeleton through threonine phosphorylation of N-WASP.
    Park J; Sung JY; Park J; Song WJ; Chang S; Chung KC
    J Cell Sci; 2012 Jan; 125(Pt 1):67-80. PubMed ID: 22250195
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Nuclear Actin and Actin-Binding Proteins in DNA Repair.
    Hurst V; Shimada K; Gasser SM
    Trends Cell Biol; 2019 Jun; 29(6):462-476. PubMed ID: 30954333
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The influence of heterochromatin on DNA double strand break repair: Getting the strong, silent type to relax.
    Goodarzi AA; Jeggo P; Lobrich M
    DNA Repair (Amst); 2010 Dec; 9(12):1273-82. PubMed ID: 21036673
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Chromatin meets the cytoskeleton: the importance of nuclear actin dynamics and associated motors for genome stability.
    Wollscheid HP; Ulrich HD
    DNA Repair (Amst); 2023 Nov; 131():103571. PubMed ID: 37738698
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Nuclear ARP2/3 drives DNA break clustering for homology-directed repair.
    Schrank BR; Aparicio T; Li Y; Chang W; Chait BT; Gundersen GG; Gottesman ME; Gautier J
    Nature; 2018 Jul; 559(7712):61-66. PubMed ID: 29925947
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Modulating dynamics and function of nuclear actin with synthetic bicyclic peptides.
    Machida N; Takahashi D; Ueno Y; Nakama Y; Gubeli RJ; Bertoldo D; Harata M
    J Biochem; 2021 Apr; 169(3):295-302. PubMed ID: 33169153
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Double-strand break repair and mis-repair in 3D.
    Zagelbaum J; Gautier J
    DNA Repair (Amst); 2023 Jan; 121():103430. PubMed ID: 36436496
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Multiscale reorganization of the genome following DNA damage facilitates chromosome translocations via nuclear actin polymerization.
    Zagelbaum J; Schooley A; Zhao J; Schrank BR; Callen E; Zha S; Gottesman ME; Nussenzweig A; Rabadan R; Dekker J; Gautier J
    Nat Struct Mol Biol; 2023 Jan; 30(1):99-106. PubMed ID: 36564591
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Chromatin mobility and relocation in DNA repair.
    Lamm N; Rogers S; Cesare AJ
    Trends Cell Biol; 2021 Oct; 31(10):843-855. PubMed ID: 34183232
    [TBL] [Abstract][Full Text] [Related]  

  • 15. An insight into understanding the coupling between homologous recombination mediated DNA repair and chromatin remodeling mechanisms in plant genome: an update.
    Banerjee S; Roy S
    Cell Cycle; 2021 Sep; 20(18):1760-1784. PubMed ID: 34437813
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Chromatin remodelling at a DNA double-strand break site in Saccharomyces cerevisiae.
    Tsukuda T; Fleming AB; Nickoloff JA; Osley MA
    Nature; 2005 Nov; 438(7066):379-83. PubMed ID: 16292314
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A requirement for polymerized actin in DNA double-strand break repair.
    Andrin C; McDonald D; Attwood KM; Rodrigue A; Ghosh S; Mirzayans R; Masson JY; Dellaire G; Hendzel MJ
    Nucleus; 2012 Jul; 3(4):384-95. PubMed ID: 22688650
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The UBC Domain Is Required for BRUCE to Promote BRIT1/MCPH1 Function in DSB Signaling and Repair Post Formation of BRUCE-USP8-BRIT1 Complex.
    Ge C; Che L; Du C
    PLoS One; 2015; 10(12):e0144957. PubMed ID: 26683461
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Histone acetylation dynamics in repair of DNA double-strand breaks.
    Aricthota S; Rana PP; Haldar D
    Front Genet; 2022; 13():926577. PubMed ID: 36159966
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Global chromatin mobility induced by a DSB is dictated by chromosomal conformation and defines the HR outcome.
    García Fernández F; Almayrac E; Carré Simon À; Batrin R; Khalil Y; Boissac M; Fabre E
    Elife; 2022 Sep; 11():. PubMed ID: 36125964
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.