These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
151 related articles for article (PubMed ID: 38967139)
1. Changing climatic controls on the greenhouse gas balance of thermokarst bogs during succession after permafrost thaw. Heffernan L; Estop-Aragonés C; Kuhn MA; Holger-Knorr K; Olefeldt D Glob Chang Biol; 2024 Jul; 30(7):e17388. PubMed ID: 38967139 [TBL] [Abstract][Full Text] [Related]
2. Constraints on potential enzyme activities in thermokarst bogs: Implications for the carbon balance of peatlands following thaw. Heffernan L; Jassey VEJ; Frederickson M; MacKenzie MD; Olefeldt D Glob Chang Biol; 2021 Oct; 27(19):4711-4726. PubMed ID: 34164885 [TBL] [Abstract][Full Text] [Related]
3. The positive net radiative greenhouse gas forcing of increasing methane emissions from a thawing boreal forest-wetland landscape. Helbig M; Chasmer LE; Kljun N; Quinton WL; Treat CC; Sonnentag O Glob Chang Biol; 2017 Jun; 23(6):2413-2427. PubMed ID: 27689625 [TBL] [Abstract][Full Text] [Related]
4. Ecosystem carbon response of an Arctic peatland to simulated permafrost thaw. Voigt C; Marushchak ME; Mastepanov M; Lamprecht RE; Christensen TR; Dorodnikov M; Jackowicz-Korczyński M; Lindgren A; Lohila A; Nykänen H; Oinonen M; Oksanen T; Palonen V; Treat CC; Martikainen PJ; Biasi C Glob Chang Biol; 2019 May; 25(5):1746-1764. PubMed ID: 30681758 [TBL] [Abstract][Full Text] [Related]
5. Persistent net release of carbon dioxide and methane from an Alaskan lowland boreal peatland complex. Euskirchen ES; Edgar CW; Kane ES; Waldrop MP; Neumann RB; Manies KL; Douglas TA; Dieleman C; Jones MC; Turetsky MR Glob Chang Biol; 2024 Jan; 30(1):e17139. PubMed ID: 38273498 [TBL] [Abstract][Full Text] [Related]
6. Direct and indirect climate change effects on carbon dioxide fluxes in a thawing boreal forest-wetland landscape. Helbig M; Chasmer LE; Desai AR; Kljun N; Quinton WL; Sonnentag O Glob Chang Biol; 2017 Aug; 23(8):3231-3248. PubMed ID: 28132402 [TBL] [Abstract][Full Text] [Related]
7. Temperature and peat type control CO2 and CH4 production in Alaskan permafrost peats. Treat CC; Wollheim WM; Varner RK; Grandy AS; Talbot J; Frolking S Glob Chang Biol; 2014 Aug; 20(8):2674-86. PubMed ID: 24616169 [TBL] [Abstract][Full Text] [Related]
8. Deep peat warming increases surface methane and carbon dioxide emissions in a black spruce-dominated ombrotrophic bog. Gill AL; Giasson MA; Yu R; Finzi AC Glob Chang Biol; 2017 Dec; 23(12):5398-5411. PubMed ID: 28675635 [TBL] [Abstract][Full Text] [Related]
9. A shift of thermokarst lakes from carbon sources to sinks during the Holocene epoch. Anthony KM; Zimov SA; Grosse G; Jones MC; Anthony PM; Chapin FS; Finlay JC; Mack MC; Davydov S; Frenzel P; Frolking S Nature; 2014 Jul; 511(7510):452-6. PubMed ID: 25043014 [TBL] [Abstract][Full Text] [Related]
10. Radiative forcing of methane fluxes offsets net carbon dioxide uptake for a tropical flooded forest. Dalmagro HJ; Zanella de Arruda PH; Vourlitis GL; Lathuillière MJ; de S Nogueira J; Couto EG; Johnson MS Glob Chang Biol; 2019 Jun; 25(6):1967-1981. PubMed ID: 30854765 [TBL] [Abstract][Full Text] [Related]
11. Lowering water table reduces carbon sink strength and carbon stocks in northern peatlands. Kwon MJ; Ballantyne A; Ciais P; Qiu C; Salmon E; Raoult N; Guenet B; Göckede M; Euskirchen ES; Nykänen H; Schuur EAG; Turetsky MR; Dieleman CM; Kane ES; Zona D Glob Chang Biol; 2022 Nov; 28(22):6752-6770. PubMed ID: 36039832 [TBL] [Abstract][Full Text] [Related]
12. Spatially-integrated estimates of net ecosystem exchange and methane fluxes from Canadian peatlands. Webster KL; Bhatti JS; Thompson DK; Nelson SA; Shaw CH; Bona KA; Hayne SL; Kurz WA Carbon Balance Manag; 2018 Sep; 13(1):16. PubMed ID: 30238271 [TBL] [Abstract][Full Text] [Related]
13. Permafrost thaw causes large carbon loss in boreal peatlands while changes to peat quality are limited. Harris LI; Olefeldt D; Pelletier N; Blodau C; Knorr KH; Talbot J; Heffernan L; Turetsky M Glob Chang Biol; 2023 Oct; 29(19):5720-5735. PubMed ID: 37565359 [TBL] [Abstract][Full Text] [Related]
14. Assessing soil carbon dioxide and methane fluxes from a Scots pine raised bog-edge-woodland. Mazzola V; Perks MP; Smith J; Yeluripati J; Xenakis G J Environ Manage; 2022 Jan; 302(Pt B):114061. PubMed ID: 34800769 [TBL] [Abstract][Full Text] [Related]
15. Greenhouse gas fluxes response to autumn freeze-thaw period in continuous permafrost region of Daxing'an Mountains, Northeast China. Gao D; Wang W; Gao W; Zeng Q; Liang H Environ Sci Pollut Res Int; 2022 Sep; 29(42):63753-63767. PubMed ID: 35461419 [TBL] [Abstract][Full Text] [Related]
16. Permafrost thaw driven changes in hydrology and vegetation cover increase trace gas emissions and climate forcing in Stordalen Mire from 1970 to 2014. Varner RK; Crill PM; Frolking S; McCalley CK; Burke SA; Chanton JP; Holmes ME; ; Saleska S; Palace MW Philos Trans A Math Phys Eng Sci; 2022 Jan; 380(2215):20210022. PubMed ID: 34865532 [TBL] [Abstract][Full Text] [Related]
17. Large stocks of peatland carbon and nitrogen are vulnerable to permafrost thaw. Hugelius G; Loisel J; Chadburn S; Jackson RB; Jones M; MacDonald G; Marushchak M; Olefeldt D; Packalen M; Siewert MB; Treat C; Turetsky M; Voigt C; Yu Z Proc Natl Acad Sci U S A; 2020 Aug; 117(34):20438-20446. PubMed ID: 32778585 [TBL] [Abstract][Full Text] [Related]
18. Coupling plant litter quantity to a novel metric for litter quality explains C storage changes in a thawing permafrost peatland. Hough M; McCabe S; Vining SR; Pickering Pedersen E; Wilson RM; Lawrence R; Chang KY; Bohrer G; ; Riley WJ; Crill PM; Varner RK; Blazewicz SJ; Dorrepaal E; Tfaily MM; Saleska SR; Rich VI Glob Chang Biol; 2022 Feb; 28(3):950-968. PubMed ID: 34727401 [TBL] [Abstract][Full Text] [Related]