These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

125 related articles for article (PubMed ID: 38967319)

  • 1. Diverse Chiral Nanotubes Assembled from Identical DNA Strands.
    Xie C; Chen Z; Chen K; Hu Y; Xu F; Pan L
    Nano Lett; 2024 Jul; 24(28):8696-8701. PubMed ID: 38967319
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A study on a special DNA nanotube assembled from two single-stranded tiles.
    Xu F; Wu T; Shi X; Pan L
    Nanotechnology; 2019 Mar; 30(11):115602. PubMed ID: 30566929
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Large Chiral Nanotubes Self-Assembled by DNA Bricks.
    Sun S; Yang Y; Li D; Zhu J
    J Am Chem Soc; 2019 Dec; 141(50):19524-19528. PubMed ID: 31789023
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Self-assembly of chiral DNA nanotubes.
    Mitchell JC; Harris JR; Malo J; Bath J; Turberfield AJ
    J Am Chem Soc; 2004 Dec; 126(50):16342-3. PubMed ID: 15600334
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Chiromers: conformation-driven mirror-image supramolecular chirality isomerism identified in a new class of helical rosette nanotubes.
    Hemraz UD; El-Bakkari M; Yamazaki T; Cho JY; Beingessner RL; Fenniri H
    Nanoscale; 2014 Aug; 6(16):9421-7. PubMed ID: 24770905
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Design and characterization of programmable DNA nanotubes.
    Rothemund PW; Ekani-Nkodo A; Papadakis N; Kumar A; Fygenson DK; Winfree E
    J Am Chem Soc; 2004 Dec; 126(50):16344-52. PubMed ID: 15600335
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Self-assembly of DNA nanotubes with controllable diameters.
    Wilner OI; Orbach R; Henning A; Teller C; Yehezkeli O; Mertig M; Harries D; Willner I
    Nat Commun; 2011 Nov; 2():540. PubMed ID: 22086340
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Self-Assembled DNA Tubes Forming Helices of Controlled Diameter and Chirality.
    Maier AM; Bae W; Schiffels D; Emmerig JF; Schiff M; Liedl T
    ACS Nano; 2017 Feb; 11(2):1301-1306. PubMed ID: 28125777
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Dissecting the Dynamic Pathways of Stereoselective DNA Threading Intercalation.
    Almaqwashi AA; Andersson J; Lincoln P; Rouzina I; Westerlund F; Williams MC
    Biophys J; 2016 Mar; 110(6):1255-63. PubMed ID: 27028636
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Au nanorod helical superstructures with designed chirality.
    Lan X; Lu X; Shen C; Ke Y; Ni W; Wang Q
    J Am Chem Soc; 2015 Jan; 137(1):457-62. PubMed ID: 25516475
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Joining and scission in the self-assembly of nanotubes from DNA tiles.
    Ekani-Nkodo A; Kumar A; Fygenson DK
    Phys Rev Lett; 2004 Dec; 93(26 Pt 1):268301. PubMed ID: 15698032
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Towards chirality-pure carbon nanotubes.
    Zhang Y; Zheng L
    Nanoscale; 2010 Oct; 2(10):1919-29. PubMed ID: 20835436
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Left versus right: Exploring the effects of chiral threading intercalators using optical tweezers.
    Jabak AA; Bryden N; Westerlund F; Lincoln P; McCauley MJ; Rouzina I; Williams MC; Paramanathan T
    Biophys J; 2022 Oct; 121(19):3745-3752. PubMed ID: 35470110
    [TBL] [Abstract][Full Text] [Related]  

  • 14. DNA Nanostructures that Self-Heal in Serum.
    Li Y; Schulman R
    Nano Lett; 2019 Jun; 19(6):3751-3760. PubMed ID: 31140279
    [TBL] [Abstract][Full Text] [Related]  

  • 15. DNA nanotubes self-assembled from triple-crossover tiles as templates for conductive nanowires.
    Liu D; Park SH; Reif JH; LaBean TH
    Proc Natl Acad Sci U S A; 2004 Jan; 101(3):717-22. PubMed ID: 14709674
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Intercalators as molecular chaperones in DNA self-assembly.
    Greschner AA; Bujold KE; Sleiman HF
    J Am Chem Soc; 2013 Jul; 135(30):11283-8. PubMed ID: 23829631
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Regulation of 2D DNA Nanostructures by the Coupling of Intrinsic Tile Curvature and Arm Twist.
    Jiang C; Lu B; Zhang W; Ohayon YP; Feng F; Li S; Seeman NC; Xiao SJ
    J Am Chem Soc; 2022 Apr; 144(15):6759-6769. PubMed ID: 35385657
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Minimalist Design of Wireframe DNA Nanotubes: Tunable Geometry, Size, Chirality, and Dynamics.
    Luo X; Saliba D; Yang T; Gentile S; Mori K; Islas P; Das T; Bagheri N; Porchetta A; Guarne A; Cosa G; Sleiman HF
    Angew Chem Int Ed Engl; 2023 Oct; 62(44):e202309869. PubMed ID: 37610293
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Directing self-assembly of DNA nanotubes using programmable seeds.
    Mohammed AM; Schulman R
    Nano Lett; 2013 Sep; 13(9):4006-13. PubMed ID: 23919535
    [TBL] [Abstract][Full Text] [Related]  

  • 20. DNA nanotube formation based on normal mode analysis.
    Qian P; Seo S; Kim J; Kim S; Lim BS; Liu WK; Kim BJ; LaBean TH; Park SH; Kim MK
    Nanotechnology; 2012 Mar; 23(10):105704. PubMed ID: 22361575
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.