These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

104 related articles for article (PubMed ID: 38967487)

  • 1. Enzymatic synthesis of ligand-bearing oligonucleotides for the development of metal-responsive DNA materials.
    Takezawa Y; Shionoya M
    Org Biomol Chem; 2024 Jul; ():. PubMed ID: 38967487
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Enzymatic Synthesis of Cu(II)-Responsive Deoxyribozymes through Polymerase Incorporation of Artificial Ligand-Type Nucleotides.
    Takezawa Y; Nakama T; Shionoya M
    J Am Chem Soc; 2019 Dec; 141(49):19342-19350. PubMed ID: 31731834
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The Effects of Magnesium Ions on the Enzymatic Synthesis of Ligand-Bearing Artificial DNA by Template-Independent Polymerase.
    Takezawa Y; Kobayashi T; Shionoya M
    Int J Mol Sci; 2016 Jun; 17(6):. PubMed ID: 27338351
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Allosteric Regulation of DNAzyme Activities through Intrastrand Transformation Induced by Cu(II)-Mediated Artificial Base Pairing.
    Nakama T; Takezawa Y; Sasaki D; Shionoya M
    J Am Chem Soc; 2020 Jun; 142(22):10153-10162. PubMed ID: 32396728
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Metal-mediated DNA base pairing: alternatives to hydrogen-bonded Watson-Crick base pairs.
    Takezawa Y; Shionoya M
    Acc Chem Res; 2012 Dec; 45(12):2066-76. PubMed ID: 22452649
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Enzymatic synthesis of ligand-bearing DNAs for metal-mediated base pairing utilising a template-independent polymerase.
    Kobayashi T; Takezawa Y; Sakamoto A; Shionoya M
    Chem Commun (Camb); 2016 Mar; 52(19):3762-5. PubMed ID: 26810253
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Site-specific polymerase incorporation of consecutive ligand-containing nucleotides for multiple metal-mediated base pairing.
    Nakama T; Takezawa Y; Shionoya M
    Chem Commun (Camb); 2021 Feb; 57(11):1392-1395. PubMed ID: 33438690
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Metal-mediated DNA base pairing of easily prepared 2-oxo-imidazole-4-carboxylate nucleotides.
    Hu L; Takezawa Y; Shionoya M
    Chem Sci; 2022 Apr; 13(14):3977-3983. PubMed ID: 35440985
    [TBL] [Abstract][Full Text] [Related]  

  • 9. On the Enzymatic Formation of Metal Base Pairs with Thiolated and pK
    Levi-Acobas F; Röthlisberger P; Sarac I; Marlière P; Herdewijn P; Hollenstein M
    Chembiochem; 2019 Dec; 20(24):3032-3040. PubMed ID: 31216100
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Enzymatic Preparation of DNA with an Expanded Genetic Alphabet Using Terminal Deoxynucleotidyl Transferase and Its Applications.
    Wang G; Du Y; Chen T
    Methods Mol Biol; 2024; 2760():133-145. PubMed ID: 38468086
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Bifacial Base-Pairing Behaviors of 5-Hydroxyuracil DNA Bases through Hydrogen Bonding and Metal Coordination.
    Takezawa Y; Nishiyama K; Mashima T; Katahira M; Shionoya M
    Chemistry; 2015 Oct; 21(42):14713-6. PubMed ID: 26332356
    [TBL] [Abstract][Full Text] [Related]  

  • 12. One-Pot Enzymatic Preparation of Oligonucleotides with an Expanded Genetic Alphabet via Controlled Pause and Restart of Primer Extension: Making Unnatural Out of Natural.
    Cao Y; Bai J; Zou J; Du Y; Chen T
    ACS Synth Biol; 2023 Sep; 12(9):2691-2706. PubMed ID: 37672623
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cu
    Rajasree SC; Takezawa Y; Shionoya M
    Chem Commun (Camb); 2023 Jan; 59(8):1006-1009. PubMed ID: 36524578
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Enzymatic Synthesis of DNA with an Expanded Genetic Alphabet Using Terminal Deoxynucleotidyl Transferase.
    Wang G; He C; Zou J; Liu J; Du Y; Chen T
    ACS Synth Biol; 2022 Dec; 11(12):4142-4155. PubMed ID: 36455255
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Towards the enzymatic formation of artificial metal base pairs with a carboxy-imidazole-modified nucleotide.
    Röthlisberger P; Levi-Acobas F; Sarac I; Marlière P; Herdewijn P; Hollenstein M
    J Inorg Biochem; 2019 Feb; 191():154-163. PubMed ID: 30529723
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Natural versus artificial creation of base pairs in DNA: origin of nucleobases from the perspectives of unnatural base pair studies.
    Hirao I; Kimoto M; Yamashige R
    Acc Chem Res; 2012 Dec; 45(12):2055-65. PubMed ID: 22263525
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Enzymatic construction of metal-mediated nucleic acid base pairs.
    Flamme M; Figazzolo C; Gasser G; Hollenstein M
    Metallomics; 2021 Apr; 13(4):. PubMed ID: 33791776
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Alternative DNA base pairing through metal coordination.
    Clever GH; Shionoya M
    Met Ions Life Sci; 2012; 10():269-94. PubMed ID: 22210343
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Supramolecular DNA Three-Way Junction Motifs With a Bridging Metal Center.
    Takezawa Y; Shionoya M
    Front Chem; 2019; 7():925. PubMed ID: 32010671
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Ligase-mediated synthesis of Cu
    Takezawa Y; Zhang H; Mori K; Hu L; Shionoya M
    Chem Sci; 2024 Feb; 15(7):2365-2370. PubMed ID: 38362437
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.