These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
176 related articles for article (PubMed ID: 38967649)
1. Blockade of the TIGIT-CD155/CD112 axis enhances functionality of NK-92 but not cytokine-induced memory-like NK cells toward CD155-expressing acute myeloid leukemia. Seel K; Schirrmann RL; Stowitschek D; Ioseliani T; Roiter L; Knierim A; André MC Cancer Immunol Immunother; 2024 Jul; 73(9):180. PubMed ID: 38967649 [TBL] [Abstract][Full Text] [Related]
2. Immune checkpoint molecule DNAM-1/CD112 axis is a novel target for natural killer-cell therapy in acute myeloid leukemia. Kaito Y; Sugimoto E; Nakamura F; Tsukune Y; Sasaki M; Yui S; Yamaguchi H; Goyama S; Nannya Y; Mitani K; Tamura H; Imai Y Haematologica; 2024 Apr; 109(4):1107-1120. PubMed ID: 37731380 [TBL] [Abstract][Full Text] [Related]
3. Increased TIGIT expressing NK cells with dysfunctional phenotype in AML patients correlated with poor prognosis. Liu G; Zhang Q; Yang J; Li X; Xian L; Li W; Lin T; Cheng J; Lin Q; Xu X; Li Q; Lin Y; Zhou M; Shen E Cancer Immunol Immunother; 2022 Feb; 71(2):277-287. PubMed ID: 34129052 [TBL] [Abstract][Full Text] [Related]
4. Combined Blockade of TIGIT and CD39 or A2AR Enhances NK-92 Cell-Mediated Cytotoxicity in AML. Brauneck F; Seubert E; Wellbrock J; Schulze Zur Wiesch J; Duan Y; Magnus T; Bokemeyer C; Koch-Nolte F; Menzel S; Fiedler W Int J Mol Sci; 2021 Nov; 22(23):. PubMed ID: 34884723 [TBL] [Abstract][Full Text] [Related]
5. CD155 and CD112 as possible therapeutic targets of Kaito Y; Hirano M; Futami M; Nojima M; Tamura H; Tojo A; Imai Y Oncol Lett; 2022 Feb; 23(2):51. PubMed ID: 34992684 [TBL] [Abstract][Full Text] [Related]
6. CD155 blockade enhances allogeneic natural killer cell-mediated antitumor response against osteosarcoma. Cho MM; Song L; Quamine AE; Szewc F; Shi L; Ebben JD; Turicek DP; Kline JM; Burpee DM; Lafeber EO; Phillips MF; Ceas AS; Erbe AK; Capitini CM bioRxiv; 2024 Jun; ():. PubMed ID: 37333207 [TBL] [Abstract][Full Text] [Related]
7. DNAM-1 and the TIGIT/PVRIG/TACTILE Axis: Novel Immune Checkpoints for Natural Killer Cell-Based Cancer Immunotherapy. Sanchez-Correa B; Valhondo I; Hassouneh F; Lopez-Sejas N; Pera A; Bergua JM; Arcos MJ; Bañas H; Casas-Avilés I; Durán E; Alonso C; Solana R; Tarazona R Cancers (Basel); 2019 Jun; 11(6):. PubMed ID: 31234588 [TBL] [Abstract][Full Text] [Related]
8. Decreased expression of DNAM-1 on NK cells from acute myeloid leukemia patients. Sanchez-Correa B; Gayoso I; Bergua JM; Casado JG; Morgado S; Solana R; Tarazona R Immunol Cell Biol; 2012 Jan; 90(1):109-15. PubMed ID: 21383766 [TBL] [Abstract][Full Text] [Related]
9. Characterization of the DNAM-1, TIGIT and TACTILE Axis on Circulating NK, NKT-Like and T Cell Subsets in Patients with Acute Myeloid Leukemia. Valhondo I; Hassouneh F; Lopez-Sejas N; Pera A; Sanchez-Correa B; Guerrero B; Bergua JM; Arcos MJ; Bañas H; Casas-Avilés I; Sanchez-Garcia J; Serrano J; Martin C; Duran E; Alonso C; Solana R; Tarazona R Cancers (Basel); 2020 Aug; 12(8):. PubMed ID: 32764229 [No Abstract] [Full Text] [Related]
10. Loss of DNAM-1 ligand expression by acute myeloid leukemia cells renders them resistant to NK cell killing. Kearney CJ; Ramsbottom KM; Voskoboinik I; Darcy PK; Oliaro J Oncoimmunology; 2016 Aug; 5(8):e1196308. PubMed ID: 27622064 [TBL] [Abstract][Full Text] [Related]
11. NK cells play a significant role in immunosurveillance at the early stage of MLL-AF9 acute myeloid leukemia via CD226/CD155 interactions. Wang Y; Chen C; Dong F; Ma S; Xu J; Gong Y; Cheng H; Zhou Y; Cheng T; Hao S Sci China Life Sci; 2015 Dec; 58(12):1288-98. PubMed ID: 26588911 [TBL] [Abstract][Full Text] [Related]
13. Contribution of inhibitory receptor TIGIT to NK cell education. He Y; Peng H; Sun R; Wei H; Ljunggren HG; Yokoyama WM; Tian Z J Autoimmun; 2017 Jul; 81():1-12. PubMed ID: 28438433 [TBL] [Abstract][Full Text] [Related]
14. TIGIT is upregulated by HIV-1 infection and marks a highly functional adaptive and mature subset of natural killer cells. Vendrame E; Seiler C; Ranganath T; Zhao NQ; Vergara R; Alary M; Labbé AC; Guédou F; Poudrier J; Holmes S; Roger M; Blish CA AIDS; 2020 May; 34(6):801-813. PubMed ID: 32028328 [TBL] [Abstract][Full Text] [Related]
15. Expression of the Inhibitory Receptor TIGIT Is Up-Regulated Specifically on NK Cells With CD226 Activating Receptor From HIV-Infected Individuals. Yin X; Liu T; Wang Z; Ma M; Lei J; Zhang Z; Fu S; Fu Y; Hu Q; Ding H; Han X; Xu J; Shang H; Jiang Y Front Immunol; 2018; 9():2341. PubMed ID: 30364127 [TBL] [Abstract][Full Text] [Related]
16. IL15 Stimulation with TIGIT Blockade Reverses CD155-mediated NK-Cell Dysfunction in Melanoma. Chauvin JM; Ka M; Pagliano O; Menna C; Ding Q; DeBlasio R; Sanders C; Hou J; Li XY; Ferrone S; Davar D; Kirkwood JM; Johnston RJ; Korman AJ; Smyth MJ; Zarour HM Clin Cancer Res; 2020 Oct; 26(20):5520-5533. PubMed ID: 32591463 [TBL] [Abstract][Full Text] [Related]
17. Memory-like NK cells armed with a neoepitope-specific CAR exhibit potent activity against NPM1 mutated acute myeloid leukemia. Dong H; Ham JD; Hu G; Xie G; Vergara J; Liang Y; Ali A; Tarannum M; Donner H; Baginska J; Abdulhamid Y; Dinh K; Soiffer RJ; Ritz J; Glimcher LH; Chen J; Romee R Proc Natl Acad Sci U S A; 2022 Jun; 119(25):e2122379119. PubMed ID: 35696582 [TBL] [Abstract][Full Text] [Related]
18. TIGIT immune checkpoint blockade enhances immunity of human peripheral blood NK cells against castration-resistant prostate cancer. Wang F; Liu S; Liu F; Xu T; Ma J; Liang J; Wang J; Liu D; Yang F; Li J; Xing N Cancer Lett; 2023 Aug; 568():216300. PubMed ID: 37414394 [TBL] [Abstract][Full Text] [Related]
19. CD155/TIGIT, a novel immune checkpoint in human cancers (Review). Liu L; You X; Han S; Sun Y; Zhang J; Zhang Y Oncol Rep; 2021 Mar; 45(3):835-845. PubMed ID: 33469677 [TBL] [Abstract][Full Text] [Related]
20. Immunoreceptor TIGIT inhibits the cytotoxicity of human cytokine-induced killer cells by interacting with CD155. Zhang B; Zhao W; Li H; Chen Y; Tian H; Li L; Zhang L; Gao C; Zheng J Cancer Immunol Immunother; 2016 Mar; 65(3):305-14. PubMed ID: 26842126 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]