These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
339 related articles for article (PubMed ID: 38967670)
1. Microalgae-mediated bioremediation: current trends and opportunities-a review. Ali SS; Hassan LHS; El-Sheekh M Arch Microbiol; 2024 Jul; 206(8):343. PubMed ID: 38967670 [TBL] [Abstract][Full Text] [Related]
2. Bioremediation potential of microalgae for sustainable soil treatment in India: A comprehensive review on heavy metal and pesticide contaminant removal. Yeheyo HA; Ealias AM; George G; Jagannathan U J Environ Manage; 2024 Jul; 363():121409. PubMed ID: 38861884 [TBL] [Abstract][Full Text] [Related]
3. Bioremediation of heavy metals from wastewater: a current perspective on microalgae-based future. Goswami RK; Agrawal K; Shah MP; Verma P Lett Appl Microbiol; 2022 Oct; 75(4):701-717. PubMed ID: 34562022 [TBL] [Abstract][Full Text] [Related]
4. Algae as a green technology for heavy metals removal from various wastewater. Salama ES; Roh HS; Dev S; Khan MA; Abou-Shanab RAI; Chang SW; Jeon BH World J Microbiol Biotechnol; 2019 May; 35(5):75. PubMed ID: 31053951 [TBL] [Abstract][Full Text] [Related]
5. Sustainable sources of biomass for bioremediation of heavy metals in waste water derived from coal-fired power generation. Saunders RJ; Paul NA; Hu Y; de Nys R PLoS One; 2012; 7(5):e36470. PubMed ID: 22590550 [TBL] [Abstract][Full Text] [Related]
6. Is Genetic Engineering a Route to Enhance Microalgae-Mediated Bioremediation of Heavy Metal-Containing Effluents? Ranjbar S; Malcata FX Molecules; 2022 Feb; 27(5):. PubMed ID: 35268582 [TBL] [Abstract][Full Text] [Related]
7. Treatment of agricultural wastewater using microalgae: A review. Li J; Li T; Sun D; Guan Y; Zhang Z Adv Appl Microbiol; 2024; 128():41-82. PubMed ID: 39059843 [TBL] [Abstract][Full Text] [Related]
8. A Review of Microalgae- and Cyanobacteria-Based Biodegradation of Organic Pollutants. Touliabah HE; El-Sheekh MM; Ismail MM; El-Kassas H Molecules; 2022 Feb; 27(3):. PubMed ID: 35164405 [TBL] [Abstract][Full Text] [Related]
9. The Utilization of Algae and Seaweed Biomass for Bioremediation of Heavy Metal-Contaminated Wastewater. Znad H; Awual MR; Martini S Molecules; 2022 Feb; 27(4):. PubMed ID: 35209061 [TBL] [Abstract][Full Text] [Related]
10. Wastewater-leachate treatment by microalgae: Biomass, carbohydrate and lipid production. Hernández-García A; Velásquez-Orta SB; Novelo E; Yáñez-Noguez I; Monje-Ramírez I; Orta Ledesma MT Ecotoxicol Environ Saf; 2019 Jun; 174():435-444. PubMed ID: 30852308 [TBL] [Abstract][Full Text] [Related]
11. Wastewater treatment by using microalgae: Insights into fate, transport, and associated challenges. Ali A; Khalid Z; Ahmed A A; Ajarem JS Chemosphere; 2023 Oct; 338():139501. PubMed ID: 37453525 [TBL] [Abstract][Full Text] [Related]
12. Potential use of algae for heavy metal bioremediation, a critical review. Zeraatkar AK; Ahmadzadeh H; Talebi AF; Moheimani NR; McHenry MP J Environ Manage; 2016 Oct; 181():817-831. PubMed ID: 27397844 [TBL] [Abstract][Full Text] [Related]
13. Microalgal multiomics-based approaches in bioremediation of hazardous contaminants. Kumar N; Shukla P Environ Res; 2024 Apr; 247():118135. PubMed ID: 38218523 [TBL] [Abstract][Full Text] [Related]
14. Removal of Nitrogen, Phosphorus, Organic Matter, and Heavy Metals from Pig-Farming Wastewater Using a Microalgae-Bacteria Consortium. Sacristan de Alva M; Oceguera-Vargas I; Lamas-Cosío E; León-Aguirre K; Arcega-Cabrera F Bull Environ Contam Toxicol; 2024 Oct; 113(5):58. PubMed ID: 39427057 [TBL] [Abstract][Full Text] [Related]
15. Microalgae-bacteria biofilms: a sustainable synergistic approach in remediation of acid mine drainage. Abinandan S; Subashchandrabose SR; Venkateswarlu K; Megharaj M Appl Microbiol Biotechnol; 2018 Feb; 102(3):1131-1144. PubMed ID: 29260261 [TBL] [Abstract][Full Text] [Related]
16. Microalgae systems - environmental agents for wastewater treatment and further potential biomass valorisation. Amaro HM; Salgado EM; Nunes OC; Pires JCM; Esteves AF J Environ Manage; 2023 Jul; 337():117678. PubMed ID: 36948147 [TBL] [Abstract][Full Text] [Related]
17. Effects of photoperiod on nutrient removal, biomass production, and algal-bacterial population dynamics in lab-scale photobioreactors treating municipal wastewater. Lee CS; Lee SA; Ko SR; Oh HM; Ahn CY Water Res; 2015 Jan; 68():680-91. PubMed ID: 25462772 [TBL] [Abstract][Full Text] [Related]
18. Critical processes and variables in microalgae biomass production coupled with bioremediation of nutrients and CO Lu W; Asraful Alam M; Liu S; Xu J; Parra Saldivar R Sci Total Environ; 2020 May; 716():135247. PubMed ID: 31839294 [TBL] [Abstract][Full Text] [Related]
19. Microalgae-based advanced municipal wastewater treatment for reuse in water bodies. Wang JH; Zhang TY; Dao GH; Xu XQ; Wang XX; Hu H- Appl Microbiol Biotechnol; 2017 Apr; 101(7):2659-2675. PubMed ID: 28213735 [TBL] [Abstract][Full Text] [Related]
20. A review on microalgae-mediated biotechnology for removing pharmaceutical contaminants in aqueous environments: Occurrence, fate, and removal mechanism. Zhou T; Zhang Z; Liu H; Dong S; Nghiem LD; Gao L; Chaves AV; Zamyadi A; Li X; Wang Q J Hazard Mater; 2023 Feb; 443(Pt A):130213. PubMed ID: 36283219 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]