These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

131 related articles for article (PubMed ID: 38967849)

  • 21. Bacterial microbiota of Aedes aegypti mosquito larvae is altered by intoxication with Bacillus thuringiensis israelensis.
    Tetreau G; Grizard S; Patil CD; Tran FH; Tran Van V; Stalinski R; Laporte F; Mavingui P; Després L; Valiente Moro C
    Parasit Vectors; 2018 Mar; 11(1):121. PubMed ID: 29499735
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Effects of Bacillus thuringiensis israelensis and spinosad on adult emergence of the non-biting midges Polypedilum nubifer (Skuse) and Tanytarsus curticornis Kieffer (Diptera: Chironomidae) in coastal wetlands.
    Duchet C; Franquet E; Lagadic L; Lagneau C
    Ecotoxicol Environ Saf; 2015 May; 115():272-8. PubMed ID: 25728359
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Effects of larval exposure to sublethal doses of Bacillus thuringiensis var. israelensis on body size, oviposition and survival of adult Anopheles coluzzii mosquitoes.
    Gowelo S; Chirombo J; Spitzen J; Koenraadt CJM; Mzilahowa T; van den Berg H; Takken W; McCann R
    Parasit Vectors; 2020 May; 13(1):259. PubMed ID: 32416733
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Toxic Effects of Fine Plant Powder Impregnated With Avermectins on Mosquito Larvae and Nontarget Aquatic Invertebrates.
    Belevich O; Yurchenko Y; Alekseev A; Kotina O; Odeyanko V; Tsentalovich Y; Yanshole L; Kryukov V; Danilov V; Glupov V
    J Med Entomol; 2021 Mar; 58(2):773-780. PubMed ID: 33112404
    [TBL] [Abstract][Full Text] [Related]  

  • 25. European common frog Rana temporaria (Anura: Ranidae) larvae show subcellular responses under field-relevant Bacillus thuringiensis var. israelensis (Bti) exposure levels.
    Allgeier S; Frombold B; Mingo V; Brühl CA
    Environ Res; 2018 Apr; 162():271-279. PubMed ID: 29407758
    [TBL] [Abstract][Full Text] [Related]  

  • 26. [Septicaemia of chironomid larvae (Diptera: Chironomidae) promoted by Bacillus cereus and B. thuringiensis].
    Khodyrev VP
    Izv Akad Nauk Ser Biol; 2012; (4):399-403. PubMed ID: 22988756
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Evaluating the effects of trophic complexity on a keystone predator by disassembling a partial intraguild predation food web.
    Davenport JM; Chalcraft DR
    J Anim Ecol; 2012 Jan; 81(1):242-50. PubMed ID: 21950407
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Laboratory and semi-field evaluation of the efficacy of
    Derua YA; Tungu PK; Malima RC; Mwingira V; Kimambo AG; Batengana BM; Machafuko P; Sambu EZ; Mgaya YD; Kisinza WN
    Curr Res Parasitol Vector Borne Dis; 2022; 2():100089. PubMed ID: 35664894
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Effects of repeated field applications of two formulations of Bacillus thuringiensis var. israelensis on non-target saltmarsh invertebrates in Atlantic coastal wetlands.
    Caquet T; Roucaute M; Le Goff P; Lagadic L
    Ecotoxicol Environ Saf; 2011 Jul; 74(5):1122-30. PubMed ID: 21592573
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Responses of benthic macroinvertebrate communities to a Bti-based insecticide in artificial microcosm streams.
    Bordalo MD; Machado AL; Campos D; Coelho SD; Rodrigues ACM; Lopes I; Pestana JLT
    Environ Pollut; 2021 Aug; 282():117030. PubMed ID: 33831627
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Long-term exposure of Aedes aegypti to Bacillus thuringiensis svar. israelensis did not involve altered susceptibility to this microbial larvicide or to other control agents.
    Carvalho KDS; Crespo MM; Araújo AP; da Silva RS; de Melo-Santos MAV; de Oliveira CMF; Silva-Filha MHNL
    Parasit Vectors; 2018 Dec; 11(1):673. PubMed ID: 30594214
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Predatory capacity and prey selectivity of nymphs of the dragonfly Pantala hymenaea.
    Quiroz-Martínez H; Rodríguez-Castro VA; Solís-Rojas C; Maldonado-Blanco MG
    J Am Mosq Control Assoc; 2005 Sep; 21(3):328-30. PubMed ID: 16252528
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Do Multi-year Applications of Bacillus thuringiensis subsp. israelensis for Control of Mosquito Larvae Affect the Abundance of B. cereus Group Populations in Riparian Wetland Soils?
    Schneider S; Tajrin T; Lundström JO; Hendriksen NB; Melin P; Sundh I
    Microb Ecol; 2017 Nov; 74(4):901-909. PubMed ID: 28600590
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Production of the bioinsecticide Bacillus thuringiensis subsp. israelensis with deltamethrin increases toxicity towards mosquito larvae.
    Tetreau G; Patil CD; Chandor-Proust A; Salunke BK; Patil SV; Després L
    Lett Appl Microbiol; 2013 Aug; 57(2):151-6. PubMed ID: 23594143
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Efficacy of native cyclopoid copepods in biological vector control with regard to their predatory behavior against the Asian tiger mosquito, Aedes albopictus.
    Pauly I; Jakoby O; Becker N
    Parasit Vectors; 2022 Oct; 15(1):351. PubMed ID: 36183110
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Foraging and vulnerability traits modify predator-prey body mass allometry: freshwater macroinvertebrates as a case study.
    Klecka J; Boukal DS
    J Anim Ecol; 2013 Sep; 82(5):1031-41. PubMed ID: 23869526
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Combination of Mesocyclops thermocyclopoides and Bacillus thuringiensis var. israelensis: a better approach for the control of Aedes aegypti larvae in water containers.
    Chansang UR; Bhumiratana A; Kittayapong P
    J Vector Ecol; 2004 Dec; 29(2):218-26. PubMed ID: 15707281
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Control of chironomid midge larvae in wastewater stabilisation ponds: comparison of five compounds.
    Craggs R; Golding L; Clearwater S; Susarla L; Donovan W
    Water Sci Technol; 2005; 51(12):191-9. PubMed ID: 16114682
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Synthetic predator cues impair immune function and make the biological pesticide Bti more lethal for vector mosquitoes.
    Op De Beeck L; Janssens L; Stoks R
    Ecol Appl; 2016 Mar; 26(2):355-66. PubMed ID: 27209779
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Histopathological effects of cypermethrin and Bacillus thuringiensis var. israelensis on midgut of Chironomus calligraphus larvae (Diptera: Chironomidae).
    Lavarías S; Arrighetti F; Siri A
    Pestic Biochem Physiol; 2017 Jun; 139():9-16. PubMed ID: 28595928
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.