These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
137 related articles for article (PubMed ID: 38968232)
1. Materials Challenges in the Electric Vehicle Transition. He D; Keith DR; Kim HC; De Kleine R; Anderson J; Doolan M Environ Sci Technol; 2024 Jul; 58(28):12297-12303. PubMed ID: 38968232 [TBL] [Abstract][Full Text] [Related]
2. A review of the life cycle assessment of electric vehicles: Considering the influence of batteries. Xia X; Li P Sci Total Environ; 2022 Mar; 814():152870. PubMed ID: 34990672 [TBL] [Abstract][Full Text] [Related]
3. Characterizing the Changes in Material Use due to Vehicle Electrification. Bhuwalka K; Field FR; De Kleine RD; Kim HC; Wallington TJ; Kirchain RE Environ Sci Technol; 2021 Jul; 55(14):10097-10107. PubMed ID: 34213890 [TBL] [Abstract][Full Text] [Related]
4. Life cycle assessment of electric vehicles: a systematic review of literature. Das PK; Bhat MY; Sajith S Environ Sci Pollut Res Int; 2024 Jan; 31(1):73-89. PubMed ID: 38038907 [TBL] [Abstract][Full Text] [Related]
5. Modeling the impact of nickel recycling from batteries on nickel demand during vehicle electrification in China from 2010 to 2050. Zhang H; Liu G; Li J; Qiao D; Zhang S; Li T; Guo X; Liu M Sci Total Environ; 2023 Feb; 859(Pt 1):159964. PubMed ID: 36372177 [TBL] [Abstract][Full Text] [Related]
6. Investigation and modeling of electric vehicle enablers (EVE) for successful penetration in context to India: mitigating the effect of urban sprawl on transportation. Rehman MA; Seth D Environ Sci Pollut Res Int; 2023 Oct; 30(49):107118-107137. PubMed ID: 36849689 [TBL] [Abstract][Full Text] [Related]
7. Circular economy strategies for mitigating metals shortages in electric vehicle batteries under China's carbon-neutral target. Hu Z; Yu B; Daigo I; Tan J; Sun F; Zhang S J Environ Manage; 2024 Feb; 352():120079. PubMed ID: 38242028 [TBL] [Abstract][Full Text] [Related]
8. Evaluating the electric vehicle popularization trend in China after 2020 and its challenges in the recycling industry. Wang S; Yu J Waste Manag Res; 2021 Jun; 39(6):818-827. PubMed ID: 32883186 [TBL] [Abstract][Full Text] [Related]
9. On the influence of second use, future battery technologies, and battery lifetime on the maximum recycled content of future electric vehicle batteries in Europe. Abdelbaky M; Peeters JR; Dewulf W Waste Manag; 2021 Apr; 125():1-9. PubMed ID: 33667978 [TBL] [Abstract][Full Text] [Related]
10. Assessment of end-of-life electric vehicle batteries in China: Future scenarios and economic benefits. Jiang S; Zhang L; Hua H; Liu X; Wu H; Yuan Z Waste Manag; 2021 Nov; 135():70-78. PubMed ID: 34478950 [TBL] [Abstract][Full Text] [Related]
11. Current status and perspectives on recycling of end-of-life battery of electric vehicle in Korea (Republic of). Choi Y; Rhee SW Waste Manag; 2020 Apr; 106():261-270. PubMed ID: 32241694 [TBL] [Abstract][Full Text] [Related]
12. [Comparative life cycle environmental assessment between electric taxi and gasoline taxi in Beijing]. Shi XQ; Sun ZX; Li XN; Li JX; Yang JX Huan Jing Ke Xue; 2015 Mar; 36(3):1105-16. PubMed ID: 25929083 [TBL] [Abstract][Full Text] [Related]
13. Electric car battery: An overview on global demand, recycling and future approaches towards sustainability. Martins LS; Guimarães LF; Botelho Junior AB; Tenório JAS; Espinosa DCR J Environ Manage; 2021 Oct; 295():113091. PubMed ID: 34171777 [TBL] [Abstract][Full Text] [Related]
14. Impact of regional temperature on the adoption of electric vehicles: an empirical study based on 20 provinces in China. Li X; Zhao X; Xue D; Tian Q Environ Sci Pollut Res Int; 2023 Jan; 30(5):11443-11457. PubMed ID: 36094712 [TBL] [Abstract][Full Text] [Related]
15. Environmental and economic benefits of electric, hybrid and conventional vehicle treatment: A case study of Lithuania. Petrauskienė K; Tverskytė R; Dvarionienė J Waste Manag; 2022 Mar; 140():55-62. PubMed ID: 35066452 [TBL] [Abstract][Full Text] [Related]
16. China's electric vehicle and climate ambitions jeopardized by surging critical material prices. Wang H; Feng K; Wang P; Yang Y; Sun L; Yang F; Chen WQ; Zhang Y; Li J Nat Commun; 2023 Mar; 14(1):1246. PubMed ID: 36870994 [TBL] [Abstract][Full Text] [Related]
17. Integrating Circular Economy Strategies with Low-Carbon Scenarios: Lithium Use in Electric Vehicles. Watari T; Nansai K; Nakajima K; McLellan BC; Dominish E; Giurco D Environ Sci Technol; 2019 Oct; 53(20):11657-11665. PubMed ID: 31577427 [TBL] [Abstract][Full Text] [Related]
18. Estimation of end-of-life electric vehicle generation and analysis of the status and prospects of power battery recycling in China. Li Y; Liu Y; Chen Y; Huang S; Ju Y Waste Manag Res; 2022 Sep; 40(9):1424-1432. PubMed ID: 35212575 [TBL] [Abstract][Full Text] [Related]
19. Reducing Greenhouse Gas Emissions from U.S. Light-Duty Transport in Line with the 2 °C Target. Zhu Y; Skerlos S; Xu M; Cooper DR Environ Sci Technol; 2021 Jul; 55(13):9326-9338. PubMed ID: 34106694 [TBL] [Abstract][Full Text] [Related]
20. Environmental life cycle assessment of battery electric vehicles from the current and future energy mix perspective. Shafique M; Luo X J Environ Manage; 2022 Feb; 303():114050. PubMed ID: 34872799 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]