These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
137 related articles for article (PubMed ID: 38968232)
21. Challenges around automotive shredder residue production and disposal. Khodier A; Williams K; Dallison N Waste Manag; 2018 Mar; 73():566-573. PubMed ID: 28501264 [TBL] [Abstract][Full Text] [Related]
22. End-of-life passenger vehicles recycling decision system in China based on dynamic material flow analysis and life cycle assessment. Liu M; Chen X; Zhang M; Lv X; Wang H; Chen Z; Huang X; Zhang X; Zhang S Waste Manag; 2020 Nov; 117():81-92. PubMed ID: 32818811 [TBL] [Abstract][Full Text] [Related]
23. What Would It Take to Get You into an Electric Car? Consumer Perceptions and Decision Making about Electric Vehicles. Brase GL J Psychol; 2019; 153(2):214-236. PubMed ID: 30260757 [TBL] [Abstract][Full Text] [Related]
24. A comparative life cycle assessment on lithium-ion battery: Case study on electric vehicle battery in China considering battery evolution. Wang S; Yu J Waste Manag Res; 2021 Jan; 39(1):156-164. PubMed ID: 33100173 [TBL] [Abstract][Full Text] [Related]
25. China's vehicle electrification impacts on sales, fuel use, and battery material demand through 2050: Optimizing consumer and industry decisions. Ou S; Hsieh IL; He X; Lin Z; Yu R; Zhou Y; Bouchard J iScience; 2021 Nov; 24(11):103375. PubMed ID: 34825140 [TBL] [Abstract][Full Text] [Related]
26. Environmental and Economic Trade-Offs of City Vehicle Fleet Electrification and Photovoltaic Installation in the U.S. PJM Interconnection. Mersky AC; Samaras C Environ Sci Technol; 2020 Jan; 54(1):380-389. PubMed ID: 31765560 [TBL] [Abstract][Full Text] [Related]
27. Quantifying the environmental impact of a Li-rich high-capacity cathode material in electric vehicles via life cycle assessment. Wang Y; Yu Y; Huang K; Chen B; Deng W; Yao Y Environ Sci Pollut Res Int; 2017 Jan; 24(2):1251-1260. PubMed ID: 27770328 [TBL] [Abstract][Full Text] [Related]
28. Performance evaluation of regulatory schemes for retired electric vehicle battery recycling within dual-recycle channels. Lin Y; Yu Z; Wang Y; Goh M J Environ Manage; 2023 Apr; 332():117354. PubMed ID: 36724597 [TBL] [Abstract][Full Text] [Related]
29. Charting the electric vehicle battery reuse and recycling network in North America. Slattery M; Dunn J; Kendall A Waste Manag; 2024 Feb; 174():76-87. PubMed ID: 38029657 [TBL] [Abstract][Full Text] [Related]
30. Greenhouse gas implications of fleet electrification based on big data-informed individual travel patterns. Cai H; Xu M Environ Sci Technol; 2013 Aug; 47(16):9035-43. PubMed ID: 23869607 [TBL] [Abstract][Full Text] [Related]
31. Private versus Shared, Automated Electric Vehicles for U.S. Personal Mobility: Energy Use, Greenhouse Gas Emissions, Grid Integration, and Cost Impacts. Sheppard CJR; Jenn AT; Greenblatt JB; Bauer GS; Gerke BF Environ Sci Technol; 2021 Mar; 55(5):3229-3239. PubMed ID: 33566604 [TBL] [Abstract][Full Text] [Related]
32. Well-to-wheel greenhouse gas emissions of electric versus combustion vehicles from 2018 to 2030 in the US. Challa R; Kamath D; Anctil A J Environ Manage; 2022 Apr; 308():114592. PubMed ID: 35121453 [TBL] [Abstract][Full Text] [Related]
33. Life Cycle Assessment of Vehicle Lightweighting: A Physics-Based Model To Estimate Use-Phase Fuel Consumption of Electrified Vehicles. Kim HC; Wallington TJ Environ Sci Technol; 2016 Oct; 50(20):11226-11233. PubMed ID: 27533735 [TBL] [Abstract][Full Text] [Related]
34. Electric vehicle recycling 2020: Key component power electronics. Bulach W; Schüler D; Sellin G; Elwert T; Schmid D; Goldmann D; Buchert M; Kammer U Waste Manag Res; 2018 Apr; 36(4):311-320. PubMed ID: 29502494 [TBL] [Abstract][Full Text] [Related]
35. The role of automobiles for the future of aluminum recycling. Modaresi R; Müller DB Environ Sci Technol; 2012 Aug; 46(16):8587-94. PubMed ID: 22816552 [TBL] [Abstract][Full Text] [Related]
36. Life cycle assessment of battery electric vehicles: Implications of future electricity mix and different battery end-of-life management. Koroma MS; Costa D; Philippot M; Cardellini G; Hosen MS; Coosemans T; Messagie M Sci Total Environ; 2022 Jul; 831():154859. PubMed ID: 35358517 [TBL] [Abstract][Full Text] [Related]
37. Review of the Fuel Saving, Life Cycle GHG Emission, and Ownership Cost Impacts of Lightweighting Vehicles with Different Powertrains. Luk JM; Kim HC; De Kleine R; Wallington TJ; MacLean HL Environ Sci Technol; 2017 Aug; 51(15):8215-8228. PubMed ID: 28714678 [TBL] [Abstract][Full Text] [Related]
38. Research on Spent LiFePO Zhu L; Chen M Int J Environ Res Public Health; 2020 Nov; 17(23):. PubMed ID: 33261047 [TBL] [Abstract][Full Text] [Related]
39. Long-term strategies for increased recycling of automotive aluminum and its alloying elements. Løvik AN; Modaresi R; Müller DB Environ Sci Technol; 2014 Apr; 48(8):4257-65. PubMed ID: 24655476 [TBL] [Abstract][Full Text] [Related]
40. Uncovering the in-use metal stocks and implied recycling potential in electric vehicle batteries considering cascaded use: a case study of China. Yang H; Song X; Zhang X; Lu B; Yang D; Li B Environ Sci Pollut Res Int; 2021 Sep; 28(33):45867-45878. PubMed ID: 33884548 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]