These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

161 related articles for article (PubMed ID: 38968283)

  • 1. Sparse spectral graph analysis and its application to gastric cancer drug resistance-specific molecular interplays identification.
    Park H; Miyano S
    PLoS One; 2024; 19(7):e0305386. PubMed ID: 38968283
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Unveiling Gene Regulatory Networks That Characterize Difference of Molecular Interplays Between Gastric Cancer Drug Sensitive and Resistance Cell Lines.
    Park H
    J Comput Biol; 2024 Mar; 31(3):257-274. PubMed ID: 38394313
    [TBL] [Abstract][Full Text] [Related]  

  • 3. PredictiveNetwork: predictive gene network estimation with application to gastric cancer drug response-predictive network analysis.
    Park H; Imoto S; Miyano S
    BMC Bioinformatics; 2022 Aug; 23(1):342. PubMed ID: 35974335
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Gene Regulatory Network-Classifier: Gene Regulatory Network-Based Classifier and Its Applications to Gastric Cancer Drug (5-Fluorouracil) Marker Identification.
    Park H; Imoto S; Miyano S
    J Comput Biol; 2023 Feb; 30(2):223-243. PubMed ID: 36450117
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Comprehensive information-based differential gene regulatory networks analysis (CIdrgn): Application to gastric cancer and chemotherapy-responsive gene network identification.
    Park H; Imoto S; Miyano S
    PLoS One; 2023; 18(8):e0286044. PubMed ID: 37610997
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Uncovering Molecular Mechanisms of Drug Resistance via Network-Constrained Common Structure Identification.
    Park H; Yamaguchi R; Imoto S; Miyano S
    J Comput Biol; 2022 Mar; 29(3):257-275. PubMed ID: 35073162
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Differential Gene Regulatory Network Analysis between Azacitidine-Sensitive and -Resistant Cell Lines.
    Park H; Miyano S
    Int J Mol Sci; 2024 Mar; 25(6):. PubMed ID: 38542276
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Functional and transcriptomic characterization of cisplatin-resistant AGS and MKN-28 gastric cancer cell lines.
    Mora-Lagos B; Cartas-Espinel I; Riquelme I; Parker AC; Piccolo SR; Viscarra T; Reyes ME; Zanella L; Buchegger K; Ili C; Brebi P
    PLoS One; 2020; 15(1):e0228331. PubMed ID: 31990955
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Adaptive NetworkProfiler for Identifying Cancer Characteristic-Specific Gene Regulatory Networks.
    Park H; Shimamura T; Imoto S; Miyano S
    J Comput Biol; 2018 Feb; 25(2):130-145. PubMed ID: 29053381
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Discovering novel cancer bio-markers in acquired lapatinib resistance using Bayesian methods.
    Azad AKM; Alyami SA
    Brief Bioinform; 2021 Sep; 22(5):. PubMed ID: 33857297
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Chemo-resistant Gastric Cancer Associated Gene Expression Signature: Bioinformatics Analysis Based on Gene Expression Omnibus.
    Liu JB; Jian T; Yue C; Chen D; Chen W; Bao TT; Liu HX; Cao Y; Li WB; Yang Z; Hoffman RM; Yu C
    Anticancer Res; 2019 Apr; 39(4):1689-1698. PubMed ID: 30952707
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Bioinformatics Analysis of Potential Key Genes in Trastuzumab-Resistant Gastric Cancer.
    Yang G; Jian L; Lin X; Zhu A; Wen G
    Dis Markers; 2019; 2019():1372571. PubMed ID: 31949544
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Identification of genes with differential expression in acquired drug-resistant gastric cancer cells using high-density oligonucleotide microarrays.
    Kang HC; Kim IJ; Park JH; Shin Y; Ku JL; Jung MS; Yoo BC; Kim HK; Park JG
    Clin Cancer Res; 2004 Jan; 10(1 Pt 1):272-84. PubMed ID: 14734480
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Bioinformatics analysis with graph-based clustering to detect gastric cancer-related pathways.
    Liu P; Wang X; Hu CH; Hu TH
    Genet Mol Res; 2012 Sep; 11(3):3497-504. PubMed ID: 23079843
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Differential regulatory network-based quantification and prioritization of key genes underlying cancer drug resistance based on time-course RNA-seq data.
    Zhang J; Zhu W; Wang Q; Gu J; Huang LF; Sun X
    PLoS Comput Biol; 2019 Nov; 15(11):e1007435. PubMed ID: 31682596
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Topological network analysis of differentially expressed genes in cancer cells with acquired gefitinib resistance.
    Lee YS; Hwang SG; Kim JK; Park TH; Kim YR; Myeong HS; Kwon K; Jang CS; Noh YH; Kim SY
    Cancer Genomics Proteomics; 2015; 12(3):153-66. PubMed ID: 25977174
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Bioinformatics-Based Identification of Methylated-Differentially Expressed Genes and Related Pathways in Gastric Cancer.
    Li H; Liu JW; Liu S; Yuan Y; Sun LP
    Dig Dis Sci; 2017 Nov; 62(11):3029-3039. PubMed ID: 28914394
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Xprediction: Explainable EGFR-TKIs response prediction based on drug sensitivity specific gene networks.
    Park H; Yamaguchi R; Imoto S; Miyano S
    PLoS One; 2022; 17(5):e0261630. PubMed ID: 35584089
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Identification of hub genes and construction of an mRNA-miRNA-lncRNA network of gastric carcinoma using integrated bioinformatics analysis.
    Wei G; Dong Y; He Z; Qiu H; Wu Y; Chen Y
    PLoS One; 2021; 16(12):e0261728. PubMed ID: 34968391
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A gene expression signature of acquired chemoresistance to cisplatin and fluorouracil combination chemotherapy in gastric cancer patients.
    Kim HK; Choi IJ; Kim CG; Kim HS; Oshima A; Michalowski A; Green JE
    PLoS One; 2011 Feb; 6(2):e16694. PubMed ID: 21364753
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.