These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
182 related articles for article (PubMed ID: 38968292)
41. A rapid and sensitive assay for quantifying the activity of both aerobic and anaerobic ribonucleotide reductases acting upon any or all substrates. Levitz TS; Andree GA; Jonnalagadda R; Dawson CD; Bjork RE; Drennan CL PLoS One; 2022; 17(6):e0269572. PubMed ID: 35675376 [TBL] [Abstract][Full Text] [Related]
42. Allosteric control of three B12-dependent (class II) ribonucleotide reductases. Implications for the evolution of ribonucleotide reduction. Eliasson R; Pontis E; Jordan A; Reichard P J Biol Chem; 1999 Mar; 274(11):7182-9. PubMed ID: 10066778 [TBL] [Abstract][Full Text] [Related]
43. Clofarabine 5'-di and -triphosphates inhibit human ribonucleotide reductase by altering the quaternary structure of its large subunit. Aye Y; Stubbe J Proc Natl Acad Sci U S A; 2011 Jun; 108(24):9815-20. PubMed ID: 21628579 [TBL] [Abstract][Full Text] [Related]
44. Localization and characterization of two nucleotide-binding sites on the anaerobic ribonucleotide reductase from bacteriophage T4. Olcott MC; Andersson J; Sjöberg BM J Biol Chem; 1998 Sep; 273(38):24853-60. PubMed ID: 9733790 [TBL] [Abstract][Full Text] [Related]
45. Effector-Binding-Directed Dimerization and Dynamic Communication between Allosteric Sites of Ribonucleotide Reductase. Pham B; Lindsay RJ; Shen T Biochemistry; 2019 Feb; 58(6):697-705. PubMed ID: 30571104 [TBL] [Abstract][Full Text] [Related]
46. HUG Domain Is Responsible for Active Dimer Stabilization in an NrdJd Ribonucleotide Reductase. Fietze T; Wilk P; Kabinger F; Anoosheh S; Hofer A; Lundin D; Feiler CG; Weiss MS; Loderer C Biochemistry; 2022 Aug; 61(15):1633-1641. PubMed ID: 35856337 [TBL] [Abstract][Full Text] [Related]
47. Cooperative and allosterically controlled nucleotide binding regulates the DNA binding activity of NrdR. McKethan BL; Spiro S Mol Microbiol; 2013 Oct; 90(2):278-89. PubMed ID: 23941567 [TBL] [Abstract][Full Text] [Related]
48. A photoaffinity-labeled allosteric site in Escherichia coli ribonucleotide reductase. Eriksson S; Sjöberg BM; Jörnvall H; Carlquist M J Biol Chem; 1986 Feb; 261(4):1878-82. PubMed ID: 3511053 [TBL] [Abstract][Full Text] [Related]
50. Enzymatically active mammalian ribonucleotide reductase exists primarily as an alpha6beta2 octamer. Rofougaran R; Vodnala M; Hofer A J Biol Chem; 2006 Sep; 281(38):27705-11. PubMed ID: 16861739 [TBL] [Abstract][Full Text] [Related]
51. Cloning and characterization of the R1 and R2 subunits of ribonucleotide reductase from Trypanosoma brucei. Hofer A; Schmidt PP; Gräslund A; Thelander L Proc Natl Acad Sci U S A; 1997 Jun; 94(13):6959-64. PubMed ID: 9192674 [TBL] [Abstract][Full Text] [Related]
52. Implications of the inability of Listeria monocytogenes EGD-e to grow anaerobically due to a deletion in the class III NrdD ribonucleotide reductase for its use as a model laboratory strain. Ofer A; Kreft J; Logan DT; Cohen G; Borovok I; Aharonowitz Y J Bacteriol; 2011 Jun; 193(12):2931-40. PubMed ID: 21478338 [TBL] [Abstract][Full Text] [Related]
53. Structure and function of the radical enzyme ribonucleotide reductase. Eklund H; Uhlin U; Färnegårdh M; Logan DT; Nordlund P Prog Biophys Mol Biol; 2001 Nov; 77(3):177-268. PubMed ID: 11796141 [TBL] [Abstract][Full Text] [Related]
54. IRBIT promotes allosteric inhibition of ribonucleotide reductase. Cancer Discov; 2014 Nov; 4(11):1255. PubMed ID: 25367944 [TBL] [Abstract][Full Text] [Related]
55. Mutant R1 proteins from Escherichia coli class Ia ribonucleotide reductase with altered responses to dATP inhibition. Birgander PL; Kasrayan A; Sjöberg BM J Biol Chem; 2004 Apr; 279(15):14496-501. PubMed ID: 14752109 [TBL] [Abstract][Full Text] [Related]
56. A unique cysteine-rich zinc finger domain present in a majority of class II ribonucleotide reductases mediates catalytic turnover. Loderer C; Jonna VR; Crona M; Rozman Grinberg I; Sahlin M; Hofer A; Lundin D; Sjöberg BM J Biol Chem; 2017 Nov; 292(46):19044-19054. PubMed ID: 28972190 [TBL] [Abstract][Full Text] [Related]
57. Nucleoside Analogue Triphosphates Allosterically Regulate Human Ribonucleotide Reductase and Identify Chemical Determinants That Drive Substrate Specificity. Knappenberger AJ; Ahmad MF; Viswanathan R; Dealwis CG; Harris ME Biochemistry; 2016 Oct; 55(41):5884-5896. PubMed ID: 27634056 [TBL] [Abstract][Full Text] [Related]
58. Structural determinants and distribution of phosphate specificity in ribonucleotide reductases. Schell E; Nouairia G; Steiner E; Weber N; Lundin D; Loderer C J Biol Chem; 2021 Aug; 297(2):101008. PubMed ID: 34314684 [TBL] [Abstract][Full Text] [Related]
59. Protein engineering a PhotoRNR chimera based on a unifying evolutionary apparatus among the natural classes of ribonucleotide reductases. Song DY; Stubbe J; Nocera DG Proc Natl Acad Sci U S A; 2024 Apr; 121(18):e2317291121. PubMed ID: 38648489 [TBL] [Abstract][Full Text] [Related]
60. Structural and Biochemical Investigation of Class I Ribonucleotide Reductase from the Hyperthermophile Rehling D; Scaletti ER; Rozman Grinberg I; Lundin D; Sahlin M; Hofer A; Sjöberg BM; Stenmark P Biochemistry; 2022 Jan; 61(2):92-106. PubMed ID: 34941255 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]