These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

182 related articles for article (PubMed ID: 38968292)

  • 61. Cysteines involved in radical generation and catalysis of class III anaerobic ribonucleotide reductase. A protein engineering study of bacteriophage T4 NrdD.
    Andersson J; Westman M; Sahlin M; Sjoberg BM
    J Biol Chem; 2000 Jun; 275(26):19449-55. PubMed ID: 10748010
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Allosteric regulation of the third ribonucleotide reductase (NrdEF enzyme) from enterobacteriaceae.
    Eliasson R; Pontis E; Jordan A; Reichard P
    J Biol Chem; 1996 Oct; 271(43):26582-7. PubMed ID: 8900130
    [TBL] [Abstract][Full Text] [Related]  

  • 63. The prototypic class Ia ribonucleotide reductase from Escherichia coli: still surprising after all these years.
    Brignole EJ; Ando N; Zimanyi CM; Drennan CL
    Biochem Soc Trans; 2012 Jun; 40(3):523-30. PubMed ID: 22616862
    [TBL] [Abstract][Full Text] [Related]  

  • 64. A nitrocellulose filter binding assay for ribonucleotide reductase.
    Söderman K; Reichard P
    Anal Biochem; 1986 Jan; 152(1):89-93. PubMed ID: 3513662
    [TBL] [Abstract][Full Text] [Related]  

  • 65. The crystal structure of class II ribonucleotide reductase reveals how an allosterically regulated monomer mimics a dimer.
    Sintchak MD; Arjara G; Kellogg BA; Stubbe J; Drennan CL
    Nat Struct Biol; 2002 Apr; 9(4):293-300. PubMed ID: 11875520
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Allosteric effectors are required for subunit association in T4 phage ribonucleotide reductase.
    Hanson E; Mathews CK
    J Biol Chem; 1994 Dec; 269(49):30999-1005. PubMed ID: 7983036
    [TBL] [Abstract][Full Text] [Related]  

  • 67. A metal-binding site in the catalytic subunit of anaerobic ribonucleotide reductase.
    Logan DT; Mulliez E; Larsson KM; Bodevin S; Atta M; Garnaud PE; Sjoberg BM; Fontecave M
    Proc Natl Acad Sci U S A; 2003 Apr; 100(7):3826-31. PubMed ID: 12655046
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Two active site asparagines are essential for the reaction mechanism of the class III anaerobic ribonucleotide reductase from bacteriophage T4.
    Andersson J; Bodevin S; Westman M; Sahlin M; Sjöberg BM
    J Biol Chem; 2001 Nov; 276(44):40457-63. PubMed ID: 11526118
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Structural mechanism of allosteric substrate specificity regulation in a ribonucleotide reductase.
    Larsson KM; Jordan A; Eliasson R; Reichard P; Logan DT; Nordlund P
    Nat Struct Mol Biol; 2004 Nov; 11(11):1142-9. PubMed ID: 15475969
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Protein properties of the subunits of ribonucleotide reductase and the specificity of the allosteric site(s).
    Cory JG; Sato A; Brown NC
    Adv Enzyme Regul; 1986; 25():3-19. PubMed ID: 3544706
    [TBL] [Abstract][Full Text] [Related]  

  • 71. An ultrafiltration assay for nucleotide binding to ribonucleotide reductase.
    Ormö M; Sjöberg BM
    Anal Biochem; 1990 Aug; 189(1):138-41. PubMed ID: 2278383
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Structural interconversions modulate activity of Escherichia coli ribonucleotide reductase.
    Ando N; Brignole EJ; Zimanyi CM; Funk MA; Yokoyama K; Asturias FJ; Stubbe J; Drennan CL
    Proc Natl Acad Sci U S A; 2011 Dec; 108(52):21046-51. PubMed ID: 22160671
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Ribonucleotide reductases.
    Nordlund P; Reichard P
    Annu Rev Biochem; 2006; 75():681-706. PubMed ID: 16756507
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Bacteriophage T4 anaerobic ribonucleotide reductase contains a stable glycyl radical at position 580.
    Young P; Andersson J; Sahlin M; Sjöberg BM
    J Biol Chem; 1996 Aug; 271(34):20770-5. PubMed ID: 8702830
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Ribonucleotide reductase from Escherichia coli. Identification of allosteric effector sites by chromatography on immobilized effectors.
    von Döbeln U
    Biochemistry; 1977 Oct; 16(20):4368-71. PubMed ID: 334242
    [TBL] [Abstract][Full Text] [Related]  

  • 76. A fluorimetric readout reporting the kinetics of nucleotide-induced human ribonucleotide reductase oligomerization.
    Fu Y; Lin H; Wisitpitthaya S; Blessing WA; Aye Y
    Chembiochem; 2014 Nov; 15(17):2598-2604. PubMed ID: 25256246
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Structure, function, and mechanism of ribonucleotide reductases.
    Kolberg M; Strand KR; Graff P; Andersson KK
    Biochim Biophys Acta; 2004 Jun; 1699(1-2):1-34. PubMed ID: 15158709
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Structural basis for allosteric substrate specificity regulation in anaerobic ribonucleotide reductases.
    Larsson KM; Andersson J; Sjöberg BM; Nordlund P; Logan DT
    Structure; 2001 Aug; 9(8):739-50. PubMed ID: 11587648
    [TBL] [Abstract][Full Text] [Related]  

  • 79. A quantitative model for allosteric control of purine reduction by murine ribonucleotide reductase.
    Scott CP; Kashlan OB; Lear JD; Cooperman BS
    Biochemistry; 2001 Feb; 40(6):1651-61. PubMed ID: 11327824
    [TBL] [Abstract][Full Text] [Related]  

  • 80. An active ribonucleotide reductase from Arabidopsis thaliana cloning, expression and characterization of the large subunit.
    Sauge-Merle S; Falconet D; Fontecave M
    Eur J Biochem; 1999 Nov; 266(1):62-9. PubMed ID: 10542051
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.