These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

110 related articles for article (PubMed ID: 38968311)

  • 1. Factorized visual representations in the primate visual system and deep neural networks.
    Lindsey JW; Issa EB
    Elife; 2024 Jul; 13():. PubMed ID: 38968311
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Interaction between Scene and Object Processing Revealed by Human fMRI and MEG Decoding.
    Brandman T; Peelen MV
    J Neurosci; 2017 Aug; 37(32):7700-7710. PubMed ID: 28687603
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Large-Scale, High-Resolution Comparison of the Core Visual Object Recognition Behavior of Humans, Monkeys, and State-of-the-Art Deep Artificial Neural Networks.
    Rajalingham R; Issa EB; Bashivan P; Kar K; Schmidt K; DiCarlo JJ
    J Neurosci; 2018 Aug; 38(33):7255-7269. PubMed ID: 30006365
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Predicting Identity-Preserving Object Transformations across the Human Ventral Visual Stream.
    Mocz V; Vaziri-Pashkam M; Chun MM; Xu Y
    J Neurosci; 2021 Sep; 41(35):7403-7419. PubMed ID: 34253629
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Columnar processing of border ownership in primate visual cortex.
    Franken TP; Reynolds JH
    Elife; 2021 Nov; 10():. PubMed ID: 34845986
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Examining the Coding Strength of Object Identity and Nonidentity Features in Human Occipito-Temporal Cortex and Convolutional Neural Networks.
    Xu Y; Vaziri-Pashkam M
    J Neurosci; 2021 May; 41(19):4234-4252. PubMed ID: 33789916
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A Retinotopic Basis for the Division of High-Level Scene Processing between Lateral and Ventral Human Occipitotemporal Cortex.
    Silson EH; Chan AW; Reynolds RC; Kravitz DJ; Baker CI
    J Neurosci; 2015 Aug; 35(34):11921-35. PubMed ID: 26311774
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The Ventral Visual Pathway Represents Animal Appearance over Animacy, Unlike Human Behavior and Deep Neural Networks.
    Bracci S; Ritchie JB; Kalfas I; Op de Beeck HP
    J Neurosci; 2019 Aug; 39(33):6513-6525. PubMed ID: 31196934
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Performance-optimized hierarchical models predict neural responses in higher visual cortex.
    Yamins DL; Hong H; Cadieu CF; Solomon EA; Seibert D; DiCarlo JJ
    Proc Natl Acad Sci U S A; 2014 Jun; 111(23):8619-24. PubMed ID: 24812127
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Invariant visual object recognition: a model, with lighting invariance.
    Rolls ET; Stringer SM
    J Physiol Paris; 2006; 100(1-3):43-62. PubMed ID: 17071062
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Deep Neural Networks and Visuo-Semantic Models Explain Complementary Components of Human Ventral-Stream Representational Dynamics.
    Jozwik KM; Kietzmann TC; Cichy RM; Kriegeskorte N; Mur M
    J Neurosci; 2023 Mar; 43(10):1731-1741. PubMed ID: 36759190
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Multimodal deep neural decoding reveals highly resolved spatiotemporal profile of visual object representation in humans.
    Watanabe N; Miyoshi K; Jimura K; Shimane D; Keerativittayayut R; Nakahara K; Takeda M
    Neuroimage; 2023 Jul; 275():120164. PubMed ID: 37169115
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Visual Object Recognition: Do We (Finally) Know More Now Than We Did?
    Gauthier I; Tarr MJ
    Annu Rev Vis Sci; 2016 Oct; 2():377-396. PubMed ID: 28532357
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Visual prototypes in the ventral stream are attuned to complexity and gaze behavior.
    Rose O; Johnson J; Wang B; Ponce CR
    Nat Commun; 2021 Nov; 12(1):6723. PubMed ID: 34795262
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Coherent natural scene structure facilitates the extraction of task-relevant object information in visual cortex.
    Kaiser D; Häberle G; Cichy RM
    Neuroimage; 2021 Oct; 240():118365. PubMed ID: 34233220
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Causal Evidence for a Double Dissociation between Object- and Scene-Selective Regions of Visual Cortex: A Preregistered TMS Replication Study.
    Wischnewski M; Peelen MV
    J Neurosci; 2021 Jan; 41(4):751-756. PubMed ID: 33262244
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Representation of Gravity-Aligned Scene Structure in Ventral Pathway Visual Cortex.
    Vaziri S; Connor CE
    Curr Biol; 2016 Mar; 26(6):766-74. PubMed ID: 26923785
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Category selectivity in human visual cortex: Beyond visual object recognition.
    Peelen MV; Downing PE
    Neuropsychologia; 2017 Oct; 105():177-183. PubMed ID: 28377161
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Integrated deep visual and semantic attractor neural networks predict fMRI pattern-information along the ventral object processing pathway.
    Devereux BJ; Clarke A; Tyler LK
    Sci Rep; 2018 Jul; 8(1):10636. PubMed ID: 30006530
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Unveiling functions of the visual cortex using task-specific deep neural networks.
    Dwivedi K; Bonner MF; Cichy RM; Roig G
    PLoS Comput Biol; 2021 Aug; 17(8):e1009267. PubMed ID: 34388161
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.