These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
114 related articles for article (PubMed ID: 38968655)
1. Label-free fluorescent biosensor based on AuNPs etching releasing signal for miRNA-155 detection. Liu X; Wang Q; Diao Z; Huo D; Hou C Talanta; 2024 Oct; 278():126481. PubMed ID: 38968655 [TBL] [Abstract][Full Text] [Related]
2. Label-Free Platform for MicroRNA Detection Based on the Fluorescence Quenching of Positively Charged Gold Nanoparticles to Silver Nanoclusters. Miao X; Cheng Z; Ma H; Li Z; Xue N; Wang P Anal Chem; 2018 Jan; 90(2):1098-1103. PubMed ID: 29198110 [TBL] [Abstract][Full Text] [Related]
3. Fluorescent aptasensor for 17β-estradiol determination based on gold nanoparticles quenching the fluorescence of Rhodamine B. Ni X; Xia B; Wang L; Ye J; Du G; Feng H; Zhou X; Zhang T; Wang W Anal Biochem; 2017 Apr; 523():17-23. PubMed ID: 28137603 [TBL] [Abstract][Full Text] [Related]
4. Gold Nanoparticle Coated Silica Nanorods for Sensitive Visual Detection of microRNA on a Lateral Flow Strip Biosensor. Takalkar S; Xu H; Chen J; Baryeh K; Qiu W; Zhao JX; Liu AG Anal Sci; 2016; 32(6):617-22. PubMed ID: 27302581 [TBL] [Abstract][Full Text] [Related]
5. Ultrasensitive optical biosensor for detection of miRNA-155 using positively charged Au nanoparticles. Hakimian F; Ghourchian H; Hashemi AS; Arastoo MR; Behnam Rad M Sci Rep; 2018 Feb; 8(1):2943. PubMed ID: 29440644 [TBL] [Abstract][Full Text] [Related]
6. A target-triggered strand displacement-assisted target recycling based on carbon dots-based fluorescent probe and MSNs@PDA nanoparticles for miRNA amplified detection and fluorescence imaging. Gao Y; Xue X; Chen W; Luo Y; Xiao C; Wei K Mikrochim Acta; 2024 May; 191(6):351. PubMed ID: 38806809 [TBL] [Abstract][Full Text] [Related]
7. Ratiometric enhanced fluorometric determination and imaging of intracellular microRNA-155 by using carbon dots, gold nanoparticles and rhodamine B for signal amplification. Hamd-Ghadareh S; Hamah-Ameen BA; Salimi A; Fathi F; Soleimani F Mikrochim Acta; 2019 Jun; 186(7):469. PubMed ID: 31240482 [TBL] [Abstract][Full Text] [Related]
8. An integrated dual functional recognition/amplification bio-label for the one-step impedimetric detection of Micro-RNA-21. Azzouzi S; Mak WC; Kor K; Turner APF; Ali MB; Beni V Biosens Bioelectron; 2017 Jun; 92():154-161. PubMed ID: 28213328 [TBL] [Abstract][Full Text] [Related]
9. A versatile luminescent resonance energy transfer (LRET)-based ratiometric upconversion nanoprobe for intracellular miRNA biosensing. Gong L; Liu S; Song Y; Xie S; Guo Z; Xu J; Xu L J Mater Chem B; 2020 Jul; 8(27):5952-5961. PubMed ID: 32667025 [TBL] [Abstract][Full Text] [Related]
10. Sandwich-type microRNA biosensor based on graphene oxide incorporated 3D-flower-like MoS Dong J; Yang H; Zhao J; Wen L; He C; Hu Z; Li J; Huo D; Hou C Mikrochim Acta; 2022 Jan; 189(1):49. PubMed ID: 34989881 [TBL] [Abstract][Full Text] [Related]
11. Sensitive electrochemical detection of microRNA-21 based on propylamine-functionalized mesoporous silica with glucometer readout. Deng K; Zhang Y; Tong X Anal Bioanal Chem; 2018 Mar; 410(7):1863-1871. PubMed ID: 29353431 [TBL] [Abstract][Full Text] [Related]
12. A novel ultrasensitive and fast aptamer biosensor of SEB based on AuNPs-assisted metal-enhanced fluorescence. Chang X; Cheng Y; Wang X; Wang Y; Liu X; Han T; Gao Z; Zhou H Sci Total Environ; 2023 Feb; 858(Pt 2):159977. PubMed ID: 36347282 [TBL] [Abstract][Full Text] [Related]
13. Fluorescent aptasensor for ofloxacin detection based on the aggregation of gold nanoparticles and its effect on quenching the fluorescence of Rhodamine B. Yan Z; Yi H; Wang L; Zhou X; Yan R; Zhang D; Wang S; Su L; Zhou S Spectrochim Acta A Mol Biomol Spectrosc; 2019 Oct; 221():117203. PubMed ID: 31174139 [TBL] [Abstract][Full Text] [Related]
14. Colorimetric and fluorescent dual-mode detection of microRNA based on duplex-specific nuclease assisted gold nanoparticle amplification. Huang J; Shangguan J; Guo Q; Ma W; Wang H; Jia R; Ye Z; He X; Wang K Analyst; 2019 Aug; 144(16):4917-4924. PubMed ID: 31313769 [TBL] [Abstract][Full Text] [Related]
15. Rapid enzyme-free detection of miRNA-21 in human ovarian cancerous cells using a fluorescent nanobiosensor designed based on hairpin DNA-templated silver nanoclusters. Zoughi S; Faridbod F; Moradi S Anal Chim Acta; 2024 Sep; 1320():342968. PubMed ID: 39142796 [TBL] [Abstract][Full Text] [Related]
16. Nanoplatform based on GSH-responsive mesoporous silica nanoparticles for cancer therapy and mitochondrial targeted imaging. He H; Meng S; Li H; Yang Q; Xu Z; Chen X; Sun Z; Jiang B; Li C Mikrochim Acta; 2021 Apr; 188(5):154. PubMed ID: 33821295 [TBL] [Abstract][Full Text] [Related]
17. A label-free fluorescent aptasensor for detection of kanamycin based on dsDNA-capped mesoporous silica nanoparticles and Rhodamine B. Dehghani S; Danesh NM; Ramezani M; Alibolandi M; Lavaee P; Nejabat M; Abnous K; Taghdisi SM Anal Chim Acta; 2018 Nov; 1030():142-147. PubMed ID: 30032763 [TBL] [Abstract][Full Text] [Related]
18. SPRi/SERS dual-mode biosensor based on ployA-DNA/ miRNA/AuNPs-enhanced probe sandwich structure for the detection of multiple miRNA biomarkers. Li Y; Jiang L; Yu Z; Jiang C; Zhang F; Jin S Spectrochim Acta A Mol Biomol Spectrosc; 2024 Mar; 308():123664. PubMed ID: 38029598 [TBL] [Abstract][Full Text] [Related]
19. Double-loop hairpin probe and doxorubicin-loaded gold nanoparticles for the ultrasensitive electrochemical sensing of microRNA. Tao Y; Yin D; Jin M; Fang J; Dai T; Li Y; Li Y; Pu Q; Xie G Biosens Bioelectron; 2017 Oct; 96():99-105. PubMed ID: 28475957 [TBL] [Abstract][Full Text] [Related]
20. Dual-signal-amplified electrochemiluminescence biosensor for microRNA detection by coupling cyclic enzyme with CdTe QDs aggregate as luminophor. Zhu HY; Ding SN Biosens Bioelectron; 2019 Jun; 134():109-116. PubMed ID: 30965162 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]