These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

133 related articles for article (PubMed ID: 38968771)

  • 1. Shaping dynamical neural computations using spatiotemporal constraints.
    Kim JZ; Larsen B; Parkes L
    Biochem Biophys Res Commun; 2024 Oct; 728():150302. PubMed ID: 38968771
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Shaping dynamical neural computations using spatiotemporal constraints.
    Kim JZ; Larsen B; Parkes L
    ArXiv; 2023 Nov; ():. PubMed ID: 38076517
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Flexible multitask computation in recurrent networks utilizes shared dynamical motifs.
    Driscoll LN; Shenoy K; Sussillo D
    Nat Neurosci; 2024 Jul; 27(7):1349-1363. PubMed ID: 38982201
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Constructing Precisely Computing Networks with Biophysical Spiking Neurons.
    Schwemmer MA; Fairhall AL; Denéve S; Shea-Brown ET
    J Neurosci; 2015 Jul; 35(28):10112-34. PubMed ID: 26180189
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Computational aspects of feedback in neural circuits.
    Maass W; Joshi P; Sontag ED
    PLoS Comput Biol; 2007 Jan; 3(1):e165. PubMed ID: 17238280
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The centrality of population-level factors to network computation is demonstrated by a versatile approach for training spiking networks.
    DePasquale B; Sussillo D; Abbott LF; Churchland MM
    Neuron; 2023 Mar; 111(5):631-649.e10. PubMed ID: 36630961
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Chaotic neural dynamics facilitate probabilistic computations through sampling.
    Terada Y; Toyoizumi T
    Proc Natl Acad Sci U S A; 2024 Apr; 121(18):e2312992121. PubMed ID: 38648479
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Spatiotemporal computations of an excitable and plastic brain: neuronal plasticity leads to noise-robust and noise-constructive computations.
    Toutounji H; Pipa G
    PLoS Comput Biol; 2014 Mar; 10(3):e1003512. PubMed ID: 24651447
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effects of cellular homeostatic intrinsic plasticity on dynamical and computational properties of biological recurrent neural networks.
    Naudé J; Cessac B; Berry H; Delord B
    J Neurosci; 2013 Sep; 33(38):15032-43. PubMed ID: 24048833
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Signatures of criticality in efficient coding networks.
    Safavi S; Chalk M; Logothetis NK; Levina A
    Proc Natl Acad Sci U S A; 2024 Oct; 121(41):e2302730121. PubMed ID: 39352933
    [TBL] [Abstract][Full Text] [Related]  

  • 11. From space to time: Spatial inhomogeneities lead to the emergence of spatiotemporal sequences in spiking neuronal networks.
    Spreizer S; Aertsen A; Kumar A
    PLoS Comput Biol; 2019 Oct; 15(10):e1007432. PubMed ID: 31652259
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Computation Through Neural Population Dynamics.
    Vyas S; Golub MD; Sussillo D; Shenoy KV
    Annu Rev Neurosci; 2020 Jul; 43():249-275. PubMed ID: 32640928
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Spatial Embedding Imposes Constraints on Neuronal Network Architectures.
    Stiso J; Bassett DS
    Trends Cogn Sci; 2018 Dec; 22(12):1127-1142. PubMed ID: 30449318
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Distributed dynamical computation in neural circuits with propagating coherent activity patterns.
    Gong P; van Leeuwen C
    PLoS Comput Biol; 2009 Dec; 5(12):e1000611. PubMed ID: 20019807
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Connectomic constraints on computation in feedforward networks of spiking neurons.
    Ramaswamy V; Banerjee A
    J Comput Neurosci; 2014 Oct; 37(2):209-28. PubMed ID: 24691897
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Computational models of neuron-astrocyte interactions lead to improved efficacy in the performance of neural networks.
    Alvarellos-González A; Pazos A; Porto-Pazos AB
    Comput Math Methods Med; 2012; 2012():476324. PubMed ID: 22649480
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Perspective: network-guided pattern formation of neural dynamics.
    Hütt MT; Kaiser M; Hilgetag CC
    Philos Trans R Soc Lond B Biol Sci; 2014 Oct; 369(1653):. PubMed ID: 25180302
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Biological computation through recurrence.
    Vidal-Saez MS; Vilarroya O; Garcia-Ojalvo J
    Biochem Biophys Res Commun; 2024 Oct; 728():150301. PubMed ID: 38971000
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Encoding sensory and motor patterns as time-invariant trajectories in recurrent neural networks.
    Goudar V; Buonomano DV
    Elife; 2018 Mar; 7():. PubMed ID: 29537963
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Transient dynamics and rhythm coordination of inferior olive spatio-temporal patterns.
    Latorre R; Aguirre C; Rabinovich MI; Varona P
    Front Neural Circuits; 2013; 7():138. PubMed ID: 24046731
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.